1
|
Kumar S, Arora A, Singh SK, Kumar R, Shankar B, Singh BK. Phenyliodine bis(trifluoroacetate) as a sustainable reagent: exploring its significance in organic synthesis. Org Biomol Chem 2024; 22:3109-3185. [PMID: 38529599 DOI: 10.1039/d3ob01964k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Iodine-containing molecules, especially hypervalent iodine compounds, have gained significant attention in organic synthesis. They are valuable and sustainable reagents, leading to a remarkable surge in their use for chemical transformations. One such hypervalent iodine compound, phenyliodine bis(trifluoroacetate)/bis(trifluoroacetoxy)iodobenzene, commonly referred to as PIFA, has emerged as a prominent candidate due to its attributes of facile manipulation, moderate reactivity, low toxicity, and ready availability. PIFA presents an auspicious prospect as a substitute for costly organometallic catalysts and environmentally hazardous oxidants containing heavy metals. PIFA exhibits remarkable catalytic activity, facilitating an array of consequential organic reactions, including sulfenylation, alkylarylation, oxidative coupling, cascade reactions, amination, amidation, ring-rearrangement, carboxylation, and numerous others. Over the past decade, the application of PIFA in synthetic chemistry has witnessed substantial growth, necessitating an updated exploration of this field. In this discourse, we present a concise overview of PIFA's applications as a 'green' reagent in the domain of synthetic organic chemistry. A primary objective of this article is to bring to the forefront the scientific community's awareness of the merits associated with adopting PIFA as an environmentally conscientious alternative to heavy metals.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sunil K Singh
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India.
| | - Rajesh Kumar
- Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur-842002, India
| | - Bhawani Shankar
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
2
|
Saikia RA, Dutta A, Sarma B, Thakur AJ. Metal-Free Regioselective N 2-Arylation of 1 H-Tetrazoles with Diaryliodonium Salts. J Org Chem 2022; 87:9782-9796. [PMID: 35849501 DOI: 10.1021/acs.joc.2c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a simple, metal-free regioselective N2-arylation strategy for 5-substituted-1H-tetrazoles with diaryliodonium salts to access 2-aryl-5-substituted-tetrazoles. Diaryliodonium salts with a wide range of both electron-rich and previously challenged electron-deficient aryl groups are applicable in this method. Diversely functionalized tetrazoles are tolerable also. We have devised a one-pot system to synthesize 2,5-diaryl-tetrazoles directly from nitriles. The synthetic utility of this method is furthered extended to late-stage arylation of two biologically active molecules.
Collapse
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Anurag Dutta
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| |
Collapse
|
3
|
Cicolella A, C. D'Alterio M, Duran J, Simon S, Talarico G, Poater A. Combining Both Acceptorless Dehydrogenation and Borrowing Hydrogen Mechanisms in One System as Described by DFT Calculations. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alessandra Cicolella
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany, 69, Girona Catalonia 17003 Spain
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cintia Napoli I‐80126 Italy
| | - Massimo C. D'Alterio
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany, 69, Girona Catalonia 17003 Spain
- Dipartimento di Chimica e Biologia "A. Zambelli" Università di Salerno Via Giovanni Paolo II 132 Fisciano Salerno 84084 Italy
| | - Josep Duran
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany, 69, Girona Catalonia 17003 Spain
| | - Sílvia Simon
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany, 69, Girona Catalonia 17003 Spain
| | - Giovanni Talarico
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cintia Napoli I‐80126 Italy
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany, 69, Girona Catalonia 17003 Spain
| |
Collapse
|
4
|
Reynard G, Moisan-Labelle J, Parent É, Lebel H. Understanding the regioselectivity of 5-substituted 1 H-tetrazoles alkylation. NEW J CHEM 2022. [DOI: 10.1039/d2nj03841b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel rational to account for the selectivity of 5-substituted 1H-tetrazole alkylation.
Collapse
Affiliation(s)
- Guillaume Reynard
- Department of Chemistry and Centre in Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Qc, H3C 3J7, Canada
| | - Julien Moisan-Labelle
- Department of Chemistry and Centre in Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Qc, H3C 3J7, Canada
| | - Étienne Parent
- Department of Chemistry and Centre in Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Qc, H3C 3J7, Canada
| | - Hélène Lebel
- Department of Chemistry and Centre in Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Qc, H3C 3J7, Canada
| |
Collapse
|
5
|
Reynard G, Lebel H. Alkylation of 5-Substituted 1 H-Tetrazoles via the Diazotization of Aliphatic Amines. J Org Chem 2021; 86:12452-12459. [PMID: 34479404 DOI: 10.1021/acs.joc.1c01585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new alkylation reaction of monosubstituted tetrazoles via the diazotization of aliphatic amines is reported. This method enables preferential formation of 2,5-disubstituted tetrazoles. A one-pot 1,3-dipolar cycloaddition/diazotization sequence starting from widely available nitriles is also described. Azide residues are quenched in the second step with the nitrite reagent, thus limiting the intrinsic risk associated with trimethylsilyl azide. The reaction conditions were compatible with several functional groups, including thiocyanates, which afford preferentially disubstituted 2-alkyl-5-(substituted-thio)tetrazoles.
Collapse
Affiliation(s)
- Guillaume Reynard
- Département de Chimie, Center for Green Chemistry and Catalysis, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Hélène Lebel
- Département de Chimie, Center for Green Chemistry and Catalysis, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
6
|
Pradhan S, Thiyagarajan S, Gunanathan C. Ruthenium(ii)-catalysed 1,2-selective hydroboration of aldazines. Org Biomol Chem 2021; 19:7147-7151. [PMID: 34369947 DOI: 10.1039/d1ob01218e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an efficient and simple catalytic method for the selective and partial reduction of aldazines using ruthenium catalyst [Ru(p-cymene)Cl2]2 (1) has been accomplished. Under mild conditions, aldazines undergo the addition of pinacolborane in the presence of a ruthenium catalyst, which delivered N-boryl-N-benzyl hydrazone products. Notably, the reaction is highly selective, and results in exclusive mono-hydroboration and desymmetrization of symmetrical aldazines. Mechanistic studies indicate the involvement of in situ formed intermediate [{(η6-p-cymene)RuCl}2(μ-H-μ-Cl)] (1a) in this selective hydroboration.
Collapse
Affiliation(s)
- Subham Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Khurda-752050, India.
| | | | | |
Collapse
|
7
|
Rajamanickam S, Sah C, Mir BA, Ghosh S, Sethi G, Yadav V, Venkataramani S, Patel BK. Bu4NI-Catalyzed, Radical-Induced Regioselective N-Alkylations and Arylations of Tetrazoles Using Organic Peroxides/Peresters. J Org Chem 2020; 85:2118-2141. [DOI: 10.1021/acs.joc.9b02875] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Suresh Rajamanickam
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Chitranjan Sah
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, India
| | - Bilal Ahmad Mir
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Garima Sethi
- School of Chemical Sciences, Department of Chemistry, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - Vinita Yadav
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
8
|
Togo H, Shibasaki K. Facile Preparation of 5-Alkyl-1-aryltetrazoles with Arenes, Acyl Chlorides, Hydroxylamine, and Diphenylphosphoryl Azide. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Chang CW, Cheng MC, Lee GH, Peng SM. Facile synthesis of 1,5-disubstituted tetrazoles by reacting a ruthenium acetylide complex with trimethylsilyl azide. Dalton Trans 2019; 48:11732-11742. [PMID: 31298242 DOI: 10.1039/c9dt02363a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Treatment of [Ru]-C[triple bond, length as m-dash]CPh (1, [Ru] = (η5-C5H5)(dppe)Ru, dppe = Ph2PCH2CH2PPh2) with trimethylsilyl azide afforded the cationic nitrile complex {[Ru]NCCH2Ph}[N3] (2) and the further cycloaddition of 2 with trimethylsilyl azide at 60 °C afforded the N(2)-bound tetrazolato complex [Ru]N4CCH2Ph (3). The regiospecific alkylation of 3 gave a series of cationic N(2)-bound N(4)-alkylated-5-benzyl tetrazolato complexes {[Ru]N4(CH2R)CCH2Ph}[Br] (4a, R = C6F5; 4b, R = Ph; 4c, R = 4-CN-C6H4; 4d, R = 2,6-F2-C6H3; 4e, R = 6-CH2Br-C5NH3) and the subsequent cleavage of the Ru-N bond of 4a-4e gave N(1)-alkylated-5-benzyl tetrazoles N4(CH2R)CCH2Ph (5a-5e) in good to excellent yields and [Ru]-Br, which, on reacting with phenylacetylene, resulted in the formation of 1 thus forming a reaction cycle. The structures of 2, 3, 4a, 4c and 5a were confirmed by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Chao-Wan Chang
- Division of Preparatory Programs for Overseas Chinese Students, National Taiwan Normal University, New Taipei City 24449, Linkou, Taiwan.
| | - Ming-Chuan Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
10
|
Yanai K, Togo H. Novel preparation of N-arylmethyl-N-arylmethyleneamine N-oxides from benzylic bromides with zinc and isobutyl nitrite. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
2-Amino-4-arylthiazoles through One-Pot Transformation of Alkylarenes with NBS and Thioureas. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
|
13
|
Das UK, Ben-David Y, Diskin-Posner Y, Milstein D. N-Substituted Hydrazones by Manganese-Catalyzed Coupling of Alcohols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One System. Angew Chem Int Ed Engl 2018; 57:2179-2182. [DOI: 10.1002/anie.201712593] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Uttam Kumar Das
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Yehoshoa Ben-David
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Yael Diskin-Posner
- Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| | - David Milstein
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
14
|
Das UK, Ben-David Y, Diskin-Posner Y, Milstein D. N-Substituted Hydrazones by Manganese-Catalyzed Coupling of Alcohols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One System. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712593] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Uttam Kumar Das
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Yehoshoa Ben-David
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Yael Diskin-Posner
- Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| | - David Milstein
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
15
|
Charistoudi E, Kallitsakis MG, Charisteidis I, Triantafyllidis KS, Lykakis IN. Selective Reduction of Azines to Benzyl Hydrazones with Sodium Borohydride Catalyzed by Mesoporous Silica-Supported Silver Nanoparticles: A Catalytic Route towards Pyrazole Synthesis. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700442] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Evangelia Charistoudi
- Department of Chemistry; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
| | - Michael G. Kallitsakis
- Department of Chemistry; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
| | - Ioannis Charisteidis
- Department of Chemistry; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
| | - Kostas S. Triantafyllidis
- Department of Chemistry; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
- Chemical Process and Energy Resources Institute, CERTH; 6th km. Charilaou-Thermi rd. 57001 Thessaloniki Greece
| | - Ioannis N. Lykakis
- Department of Chemistry; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
| |
Collapse
|
16
|
Holzschneider K, Häring AP, Haack A, Corey DJ, Benter T, Kirsch SF. Pathways in the Degradation of Geminal Diazides. J Org Chem 2017; 82:8242-8250. [DOI: 10.1021/acs.joc.7b01019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Daniel J. Corey
- Department
of Chemistry, University of Michigan-Flint, 303 E. Kearsley St., Flint, Michigan 48502, United States
| | | | | |
Collapse
|