1
|
Kishor K, Prabhakar NS, Singh KN. Iodine-mediated regioselective C-3 sulfenylation using elemental sulfur and arylhydrazine hydrochloride to access 3-sulfenylated imidazo[1,2- a]pyridines. Org Biomol Chem 2025; 23:2418-2423. [PMID: 39901749 DOI: 10.1039/d4ob02095b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
A transition metal-free protocol for the regioselective C-3 sulfenylation of imidazo[1,2-a]pyridines has been explored using arylhydrazine hydrochloride and elemental sulfur, in the presence of molecular iodine and DABCO via C(sp2)-H functionalization to achieve structurally diverse 3-sulfenylated imidazo[1,2-a]pyridines in reasonably high yields.
Collapse
Affiliation(s)
- Kaushal Kishor
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Neha Sharma Prabhakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Li ZQ, Alturaifi TM, Cao Y, Joannou MV, Liu P, Engle KM. Hemilabile and Redox-Active Quinone Ligands Unlock sp 3-Rich Couplings in Nickel-Catalyzed Olefin Carbosulfenylation. Angew Chem Int Ed Engl 2024; 63:e202411870. [PMID: 39222319 DOI: 10.1002/anie.202411870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
A three-component coupling approach toward structurally complex dialkylsulfides is described via the nickel-catalyzed 1,2-carbosulfenylation of unactivated alkenes with organoboron nucleophiles and alkylsulfenamide (N-S) electrophiles. Efficient catalytic turnover is facilitated using a tailored N-S electrophile containing an N-methyl methanesulfonamide leaving group, allowing catalyst loadings as low as 1 mol %. Regioselectivity is controlled by a collection of monodentate, weakly coordinating native directing groups, including sulfonamides, amides, sulfinamides, phosphoramides, and carbamates. Key to the development of this transformation is the identification of quinones as a family of hemilabile and redox-active ligands that tune the steric and electronic properties of the metal throughout the catalytic cycle. Density functional theory (DFT) results show that the duroquinone (DQ) ligand adopts different coordination modes in different stages of the Ni-catalyzed 1,2-carbosulfenylation-binding as an η6 capping ligand to stabilize the precatalyst/resting state and prevent catalyst decomposition, binding as an X-type redox-active durosemiquinone radical anion to promote alkene migratory insertion with a less distorted square planar Ni(II) center, and binding as an L-type ligand to promote N-S oxidative addition at a relatively more electron-rich Ni(I) center.
Collapse
Affiliation(s)
- Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Turki M Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, USA
| | - Yilin Cao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Matthew V Joannou
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
3
|
Zhu Y, Deng G. Regioselective Reversal in One-Pot and Two-Step Reaction of 1-(2-Hydroxyphenyl)-Propargyl Alcohols with Aryl/Alkyl Mercaptan: Construction of 3-(Alkylthio)benzofurans and 2-(Alkylthiomethyl)benzofurans Starting from Identical Materials. J Org Chem 2024; 89:18619-18630. [PMID: 39644249 DOI: 10.1021/acs.joc.4c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The Cu(MeCN)4PF6-catalyzed reaction of 1-(2-hydroxyphenyl)-propargyl alcohols with aryl/alkyl mercaptan and subsequent treatment with K2CO3 only offered 3-(alkylthio)benzofurans, whereas the stoichiometric-exceeding CuI-mediated reaction and subsequent treatment with DIPEA furnished 2-(alkylthiomethyl)benzofurans with high selectivity. The amount of Cu(I) salts plays a key role in selective formation. This unique protocol for the selective construction of the two series of benzofurans containing alkylthio group proved to be suitable for broad substrates 1 and 2 except for aliphatic alkynyl alcohols.
Collapse
Affiliation(s)
- Yang Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
4
|
Mondal K, Paul S, Halder P, Talukdar V, Das P. Iodine-Catalyzed Regioselective C-3 Chalcogenation of 7-Azaindoles: Access to Benzothiophene-Fused 7-Azaindole Analogs. J Org Chem 2024; 89:17042-17058. [PMID: 39527407 DOI: 10.1021/acs.joc.4c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An iodine-catalyzed method has been reported for efficient regioselective C-3 sulfenylation, selenylation, thiocyanation, and selenocyanation of NH-free 7-azaindoles using thiophenols, diselenides, potassium thiocyanates, and selenocyanates, respectively. This approach showcases high efficiency and remarkable versatility, facilitating the synthesis of diverse chalcogenated 7-azaindoles. Additionally, the sulfenylated derivatives have been further diversified to generate a new array of benzothiophene-fused 7-azaindole cores of pharmaceutical interest. The synthetic flexibility of this protocol has been highlighted through the gram-scale synthesis of sulfonylated 7-azaindole-based bioactive 5-HT6 receptor agonists.
Collapse
Affiliation(s)
- Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Siddhartha Paul
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
5
|
Zhao X, Li W, Zhou L, Zhao X, Zhang Y, Li B, Li R, Zhu L. Cu(II)-Catalyzed Hydroboration Reactions of 1,1-Disubstituted α,β-Unsaturated Ketones, Esters, and Amides in Pure Water. J Org Chem 2024; 89:8334-8341. [PMID: 38860473 DOI: 10.1021/acs.joc.3c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Here, a Cu2(OH)2CO3-catalyzed hydroboration reaction of 1,1-disubstituted α,β-unsaturated compounds has been developed. The reaction was carried out using water as a solvent at room temperature except for N-monosubstituted α,β-unsaturated amides. This method is applicable to diverse 1,1-disubstituted α,β-unsaturated ketones, esters, and amides, showing excellent reactivity (up to 98% yield). Gram-scale experiments and functional group transformations further demonstrated the practicality of this method.
Collapse
Affiliation(s)
- Xue Zhao
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Weishuang Li
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Lijie Zhou
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Xuhong Zhao
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Yaoyao Zhang
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Bojie Li
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Rong Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
6
|
Li C, Chen Y, Ye F, Chen J, Zheng J. Low-Valent-Tungsten-Catalyzed Aerobic Oxidative Cross-Dehydrogenative Coupling Reaction. Molecules 2023; 28:8071. [PMID: 38138561 PMCID: PMC10745622 DOI: 10.3390/molecules28248071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
A straightforward and convenient protocol was established for the synthesis of thiophosphates and 3-sulfenylated indoles via low-valent-tungsten-catalyzed aerobic oxidative cross-dehydrogenative coupling reactions. These reactions occur under mild conditions and simple operations with commercially available starting materials, processing the advantage of excellent atom and step economy, broad substrate scope, and good functional groups tolerance. Moreover, this transformation could be practiced on the gram scale, which exhibits great potential in the preparation of drug-derived or bioactive molecules.
Collapse
Affiliation(s)
- Chunsheng Li
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (Y.C.); (F.Y.)
| | - Yaoyang Chen
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (Y.C.); (F.Y.)
| | - Feihua Ye
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (Y.C.); (F.Y.)
| | - Junhua Chen
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (Y.C.); (F.Y.)
| | - Jia Zheng
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
7
|
Saito F, Euteneuer S. One-Pot, Three-Component Assembly of Sulfides Using a Sulfoxide Reagent as a Sulfur Dication Equivalent. Org Lett 2023; 25:6057-6061. [PMID: 37551799 DOI: 10.1021/acs.orglett.3c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
We report a one-pot, three-component synthesis of sulfides by exploiting a sulfoxide reagent as a formal sulfur dication equivalent. Our protocol consists of three simple chemical operations involving two Grignard reagents and trimethylsilyl chloride (TMSCl) to sequentially form sulfenate anions, sulfenate esters, and sulfides. We demonstrate a wide range of Grignard reagents to be coupled, thereby allowing the modular, thiol-free synthesis of sulfides including dialkenyl and alkenyl-alkynyl sulfides.
Collapse
Affiliation(s)
- Fumito Saito
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Simon Euteneuer
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
8
|
Chen WC, Bai R, Cheng WL, Peng CY, Reddy DM, Badsara SS, Lee CF. Base-mediated chalcogenoaminative annulation of 2-alkynylanilines for direct access to 3-sulfenyl/selenyl-1 H-indoles. Org Biomol Chem 2023; 21:3002-3013. [PMID: 36942565 DOI: 10.1039/d3ob00279a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
An efficient and transition metal-free synthesis of 3-sulfenyl/selenyl-1H-indoles via a base-assisted chalcogenoaminative annulation of 2-alkynyl aniline with disulfides/diselenides is described. A series of 2-alkynylanilines were found compatible with dichalcogenides in this transformation providing 3-sulfenyl/selenyl-1H-indoles in good to excellent yields. The presented methodology has the advantages of easily available raw materials, functional group tolerance, and a wide range of substrates that provide access to 3-sulfenylindoles and 3-selenylindoles.
Collapse
Affiliation(s)
- Wei-Ching Chen
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Republic of China.
| | - Rekha Bai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Republic of China.
| | - Wan-Lin Cheng
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Republic of China.
| | - Chun-Yu Peng
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Republic of China.
| | | | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan 302004, India
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Republic of China.
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung City 402, Taiwan, Republic of China
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City 402, Taiwan, Republic of China
| |
Collapse
|
9
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
10
|
Diao H, Liu L, Wang J, Lin Y, Zhao X, Zeng H, Shi S, Gao W, Yang L, Du G, Zhang L. Cupric Halide‐Promoted Stereoselective Intramolecular cis‐Addition to Construct (Z)‐Chloro(Bromo)benzo[c,d]indoles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hanying Diao
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Li Liu
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Jin Wang
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Yanfei Lin
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| | - Xiangyuan Zhao
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Heyang Zeng
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Senlei Shi
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Wei Gao
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Long Yang
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Guanben Du
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Lianpeng Zhang
- Jiaxing University Chemistry Jiahang Road 138 314001 Jiaxing CHINA
| |
Collapse
|
11
|
Recent advances in transition-metal-free C–H functionalization of imidazo[1,2-a]pyridines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
12
|
Truong TS, Retailleau P, Nguyen TB. TFA/DMSO‐Promoted Cross‐Dehydrogenative Coupling of Hetaryl Thiols with Indoles: Access to 3‐(Hetarylsulfenyl)indole under Mild Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tan Sang Truong
- Institut de Chimie des Substances Naturelles chemistry FRANCE
| | | | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles Chemistry 1 avenue de la Terrasse 91198 Gif-sur-Yvette FRANCE
| |
Collapse
|
13
|
Rampon D, Seckler D, da Luz EQ, Paixão DB, Larroza AME, Schneider PH, Alves D. Transition metal catalysed direct sulfanylation of unreactive C-H bonds: an overview of the last two decades. Org Biomol Chem 2022; 20:6072-6177. [DOI: 10.1039/d2ob00986b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysed direct sulfanylations of unreactive C-H bonds have become a unique and straightforward synthetic strategy in late-stage C-S bond formation of relevant complex molecules. Such transformations have represented...
Collapse
|
14
|
Mukherjee S, Pramanik A. Mild and Expeditious Synthesis of Sulfenyl Enaminones of l-α-Amino Esters and Aryl/Alkyl Amines through NCS-Mediated Sulfenylation. ACS OMEGA 2021; 6:33805-33821. [PMID: 34926928 PMCID: PMC8675011 DOI: 10.1021/acsomega.1c05058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Sulfenylation or selenylation of enaminones of l-α-amino esters requires mild reaction conditions due to the presence of a racemization-prone chiral center and reactive side chains. An N-chlorosuccinimide (NCS)-mediated methodology has been developed for rapid sulfenylation of enaminones of l-α-amino esters and aryl/alkyl amines at room temperature in open air under metal-free conditions. Enaminones of l-α-amino esters bearing aliphatic, aromatic, and heterocyclic side chains react efficiently with diverse aryl/alkyl/heteroaryl thiols (R1SH) in the presence of NCS to afford a library of biologically important sulfenyl enaminones in good-to-excellent yields (71-90%). Under similar reaction conditions, the enaminones also react with benzeneselenol to produce selenyl enaminones in good yield (73-83%). The NCS-mediated pathway generates sulfenyl chloride (R1SCl) as an intermediate which leads to rapid sulfenylation of enaminones through cross-dehydrogenative coupling (CDC) under mild reaction conditions.
Collapse
Affiliation(s)
- Sayan Mukherjee
- Department of Chemistry, University
of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Animesh Pramanik
- Department of Chemistry, University
of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
15
|
Vera G, Mangeant R, Stiebing S, Berhault Y, Fabis F, Cailly T, Collot V. Thiofunctionalization of Electron‐Rich Heteroarenes through Magnesiation and Trapping with Octasulfur. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gonzalo Vera
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Reynald Mangeant
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Silvia Stiebing
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Yohann Berhault
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Frédéric Fabis
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Thomas Cailly
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
- Normandie Univ UNICAEN IMOGERE 14000 Caen France
- CHU Côte de Nacre Department of Nuclear Medicine 14000 Caen France
- Institut Blood and Brain@Caen-Normandie (BB@C) Boulevard Henri Becquerel 14074 Caen France
| | - Valérie Collot
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| |
Collapse
|
16
|
Riddell AB, Michalski MM, Snowdon MR, Hirst MJ, Schwan AL. N
‐Sulfanylimides as the Sulfur Source for Alkyl Allenyl Sulfoxides via [2,3]‐Sigmatropic Rearrangement. ChemistrySelect 2021. [DOI: 10.1002/slct.202102455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Adam B. Riddell
- Department of Chemistry University of Guelph 50 Stone Rd E Guelph ON Canada N1G 2W1
| | | | - Monika R. Snowdon
- Department of Chemistry University of Guelph 50 Stone Rd E Guelph ON Canada N1G 2W1
| | - Mark J. Hirst
- Department of Chemistry University of Guelph 50 Stone Rd E Guelph ON Canada N1G 2W1
| | - Adrian L. Schwan
- Department of Chemistry University of Guelph 50 Stone Rd E Guelph ON Canada N1G 2W1
| |
Collapse
|
17
|
Lai YL, Yan S, He D, Zhou LZ, Chen ZS, Du YL, Li J. Palladium-catalyzed bisthiolation of terminal alkynes for the assembly of diverse ( Z)-1,2-bis(arylthio)alkene derivatives. RSC Adv 2021; 11:28447-28451. [PMID: 35478536 PMCID: PMC9037987 DOI: 10.1039/d1ra05773a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 01/19/2023] Open
Abstract
An efficient and straightforward palladium-catalyzed three-component cascade bisthiolation of terminal alkynes and arylhydrazines with sodium thiosulfate (Na2S2O3) as the sulfur source for the assembly of functionalized (Z)-1,2-bis(arylthio)alkene derivatives is described. Using 0.5 mol% IPr–Pd–Im–Cl2 as the catalyst, a wide range of terminal alkynes and arylhydrazines are well tolerated, thus producing the desired products in good yields with good functional group tolerance and excellent regioselectivity. Moreover, this protocol could be readily scaled up, showing potential applications in organic synthesis and material science. An efficient palladium-catalyzed bisthiolation of terminal alkynes and arylhydrazines with Na2S2O3 as the sulfur source for the assembly of (Z)-1,2-bis(arylthio)alkene derivatives is described.![]()
Collapse
Affiliation(s)
- Yin-Long Lai
- College of Chemistry and Civil Engineering, Shaoguan University Shaoguan 512005 P. R. China
| | - Shaoxi Yan
- College of Chemistry and Civil Engineering, Shaoguan University Shaoguan 512005 P. R. China
| | - Dan He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Li-Zhen Zhou
- College of Chemistry and Civil Engineering, Shaoguan University Shaoguan 512005 P. R. China
| | - Zi-Shen Chen
- College of Chemistry and Civil Engineering, Shaoguan University Shaoguan 512005 P. R. China
| | - Yu-Long Du
- College of Chemistry and Civil Engineering, Shaoguan University Shaoguan 512005 P. R. China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China .,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
18
|
Yu X, Chen Y, Luo Q, Li Y, Dai P, Xia Q, Liu F, Zhang W. Selective Radical N−H Activation: the Unprecedented Harnessing of Formamide with S
8
for N−S−N Bonds Construction. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiang Yu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yu Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Qian Luo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Fang Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Wei‐Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| |
Collapse
|
19
|
Kumar P, Nagtilak PJ, Kapur M. Transition metal-catalyzed C–H functionalizations of indoles. NEW J CHEM 2021. [DOI: 10.1039/d1nj01696b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarises a wide range of transformations on the indole skeleton, including arylation, alkenylation, alkynylation, acylation, nitration, borylation, and amidation, using transition-metal catalyzed C–H functionalization as the key step.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Prajyot Jayadev Nagtilak
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
20
|
Batista GMF, de Castro PP, dos Santos JA, Skrydstrup T, Amarante GW. Synthetic developments on the preparation of sulfides from thiol-free reagents. Org Chem Front 2021. [DOI: 10.1039/d0qo01226b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This critical review covers the main thiolating reagents with respect to their characteristics and reactivities. In fact, they are complementary to each other and bring different thiolation strategies, avoiding the hazardous thiol derivatives.
Collapse
Affiliation(s)
- Gabriel M. F. Batista
- Chemistry Department
- Federal University of Juiz de Fora
- Juiz de Fora
- Brazil
- Carbon Dioxide Activation Center (CADIAC)
| | - Pedro P. de Castro
- Chemistry Department
- Federal University of Juiz de Fora
- Juiz de Fora
- Brazil
| | | | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC)
- Interdisciplinary Nanoscience Center (iNANO)
- and Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
| | | |
Collapse
|
21
|
Zheng L, Tao K, Guo W. Recent Developments in Photo‐Catalyzed/Promoted Synthesis of Indoles and Their Functionalization: Reactions and Mechanisms. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| |
Collapse
|
22
|
Okai H, Tanimoto K, Ohkado R, Iida H. Multicomponent Synthesis of Imidazo[1,2-a]pyridines: Aerobic Oxidative Formation of C–N and C–S Bonds by Flavin–Iodine-Coupled Organocatalysis. Org Lett 2020; 22:8002-8006. [DOI: 10.1021/acs.orglett.0c02929] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Kazumasa Tanimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
23
|
Yue Y, Shao H, Wang Z, Wang K, Wang L, Zhuo K, Liu J. Elemental-Sulfur-Incorporated Cyclizations of Pyrrolidines Leading to Thienopyrroles. J Org Chem 2020; 85:11265-11279. [PMID: 32701277 DOI: 10.1021/acs.joc.0c01363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report, herein, the synthesis of thieno[3,2-b]pyrroles from the direct oxidative [4 + 1] cyclization of 2-alkynyl pyrrolidines with elemental sulfur. This transformation likely originates from electrophilic attack at the β-position of pyrrolidine followed by an intramolecular thienannulation to deliver the desired product. Mechanistic investigation suggests that the present reaction involves the formation of dihydrothieno[3,2-b]pyrrole as an intermediate.
Collapse
Affiliation(s)
- Yuanyuan Yue
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Huibin Shao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhixian Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Ke Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Le Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Kelei Zhuo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jianming Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
24
|
Patel OPS, Nandwana NK, Legoabe LJ, Das BC, Kumar A. Recent Advances in Radical C−H Bond Functionalization of Imidazoheterocycles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000633] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Om P. S. Patel
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
- Centre of Excellence for Pharmaceutical Sciences North-West University Private Bag X6001 Potchefstroom 2520 South Africa
| | - Nitesh K. Nandwana
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
- Departments of Medicine and Pharmacological Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029 USA
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences North-West University Private Bag X6001 Potchefstroom 2520 South Africa
| | - Bhaskar C. Das
- Departments of Medicine and Pharmacological Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029 USA
| | - Anil Kumar
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
| |
Collapse
|
25
|
Song WH, Shi J, Chen X, Song G. Silver-Catalyzed Remote C5–H Selenylation of Indoles. J Org Chem 2020; 85:11104-11115. [DOI: 10.1021/acs.joc.0c00921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei-Hong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, P. R. China
| | - Jia Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, P. R. China
| | - Xiaohong Chen
- Center for Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, No. 1 Qinggongyuan, Dalian 116034, Liaoning, P. R. China
| | - Guoyong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, P. R. China
| |
Collapse
|
26
|
Barce Ferro CT, dos Santos BF, da Silva CDG, Brand G, da Silva BAL, de Campos Domingues NL. Review of the Syntheses and Activities of Some Sulfur-Containing Drugs. Curr Org Synth 2020; 17:192-210. [DOI: 10.2174/1570179417666200212113412] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/06/2019] [Accepted: 12/14/2019] [Indexed: 11/22/2022]
Abstract
Background:
Sulfur-containing compounds represent an important class of chemical compounds due
to their wide range of biological and pharmaceutical properties. Moreover, sulfur-containing compounds may be
applied in other fields, such as biological, organic, and materials chemistry. Several studies on the activities of
sulfur compounds have already proven their anti-inflammatory properties and use to treat diseases, such as
Alzheimer’s, Parkinson’s, and HIV. Moreover, examples of sulfur-containing compounds include dapsone,
quetiapine, penicillin, probucol, and nelfinavir, which are important drugs with known activities.
Objective:
This review will focus on the synthesis and application of some sulfur-containing compounds used to
treat several diseases, as well as promising new drug candidates.
Results:
Due to the variety of compounds containing C-S bonds, we have reviewed the different synthetic
routes used toward the synthesis of sulfur-containing drugs and other compounds.
Collapse
Affiliation(s)
- Criscieli Taynara Barce Ferro
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Beatriz Fuzinato dos Santos
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Caren Daniele Galeano da Silva
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - George Brand
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Beatriz Amaral Lopes da Silva
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Nelson Luís de Campos Domingues
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| |
Collapse
|
27
|
Liu J, Wang Z, Wang K, Liu D, Yang Y, Fan J, Zhuo K, Yue Y. Elemental Sulfur‐Promoted [2+3+1] Annulation for Synthesis of Functionalized Thiochromeno[2,3‐
b
]indoles from Indole Derivatives. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jianming Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| | - Zhixian Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| | - Ke Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| | - Dong Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| | - Yan Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| | - Junjun Fan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| | - Kelei Zhuo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| | - Yuanyuan Yue
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
28
|
Li W, Wang H, Liu S, Feng H, Benassi E, Qian B. Iodine/Manganese Catalyzed Sulfenylation of Indole via Dehydrogenative Oxidative Coupling in Anisole. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Weihe Li
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Hao Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Shengping Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Hua Feng
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| | - Enrico Benassi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Bo Qian
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 People's Republic of China
| |
Collapse
|
29
|
Pandey A, Chand S, Singh R, Kumar S, Singh KN. Iodine-Catalyzed Synthesis of 3-Arylthioindoles Employing a 1-Aryltriazene/CS 2 Combination as a New Sulfenylation Source. ACS OMEGA 2020; 5:7627-7635. [PMID: 32280906 PMCID: PMC7144174 DOI: 10.1021/acsomega.0c00472] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
A practical approach for the regioselective synthesis of 3-arylthioindoles has been accomplished using a combination of 1-aryltriazene/CS2 as a new sulfenylation source. The methodology employs molecular iodine as a catalyst and is compatible with a variety of structurally diverse reactants.
Collapse
|
30
|
Tashrifi Z, Mohammadi-Khanaposhtani M, Larijani B, Mahdavi M. C3-Functionalization of Imidazo[1,2-a
]pyridines. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901491] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zahra Tashrifi
- Endocrinology and Metabolism Research Center; Endocrinology and Metabolism Clinical Sciences Institute; Tehran University of Medical Sciences; Tehran I.R. Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center; Endocrinology and Metabolism Clinical Sciences Institute; Tehran University of Medical Sciences; Tehran I.R. Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center; Endocrinology and Metabolism Clinical Sciences Institute; Tehran University of Medical Sciences; Tehran I.R. Iran
| |
Collapse
|
31
|
Li J, Tang H, Lin Z, Yang S, Wu W, Jiang H. Palladium-catalyzed three-component cascade arylthiolation with aryldiazonium salts as S-arylation sources. Org Biomol Chem 2020; 18:4071-4078. [DOI: 10.1039/d0ob00828a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel palladium-catalyzed three-component cascade arylthiolation for the assembly of 3-sulfenylindoles and 3-sulfenylbenzofurans is described, with aryldiazonium salts as the ideal S-arylation sources.
Collapse
Affiliation(s)
- Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Zidong Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Shaorong Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
32
|
Li J, Yang S, Wu W, Jiang H. Recent developments in palladium-catalyzed C–S bond formation. Org Chem Front 2020. [DOI: 10.1039/d0qo00377h] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarized the recent developments in palladium-catalyzed C–S bond formation involving sulfenylation and sulfonylation reactions.
Collapse
Affiliation(s)
- Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Shaorong Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
33
|
Liu S, Yang H, Jiao LY, Zhang JH, Zhao C, Ma Y, Yang X. Regioselective deoxygenative chalcogenation of 7-azindole N-oxides promoted by I 2/PEG-200. Org Biomol Chem 2019; 17:10073-10087. [PMID: 31750499 DOI: 10.1039/c9ob02044f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We developed a general and sustainable approach for the regioselective deoxygenative chalcogenation of 7-azindole N-oxides; the combination of an internal oxidant and a green solvent has been used successfully for the synthesis of mono- and dichalcogenyl 7-azaindoles which are of pharmaceutical interest. The regioselectivity is tunable by the variation of the reaction conditions. I2/PEG was established as an efficient and reusable catalytic system for C-H chalcogenation. This developed methodology has great potential for practical utility, with a broad substrate scope, green reaction conditions, and operational simplicity.
Collapse
Affiliation(s)
- Shanshan Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Reddy RJ, Shankar A, Kumari AH. An Efficient Sequential One‐Pot Approach for the Synthesis of C3‐Functionalized Imidazo[1,2‐
a
]pyridines under Transition‐Metal Free Conditions. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry University College of ScienceOsmania University Hyderabad 500 007 India
| | - Angothu Shankar
- Department of Chemistry University College of ScienceOsmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry University College of ScienceOsmania University Hyderabad 500 007 India
| |
Collapse
|
35
|
Liu J, Zhang Y, Yue Y, Wang Z, Shao H, Zhuo K, Lv Q, Zhang Z. Metal-Free Dehydrogenative Double C–H Sulfuration To Access Thieno[2,3-b]indoles Using Elemental Sulfur. J Org Chem 2019; 84:12946-12959. [DOI: 10.1021/acs.joc.9b01586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianming Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Yanyan Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Yuanyuan Yue
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Zhixian Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Huibin Shao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Kelei Zhuo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Qingzhang Lv
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Zhiguo Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| |
Collapse
|
36
|
Li J, Huang R, Li C, Lin S, Wu W, Jiang H. Assembly of Functionalized 4‐Alkynylisoxazoles by Palladium‐Catalyzed Three‐Component Cascade Cyclization/Alkynylation. Chem Asian J 2019; 14:2309-2315. [DOI: 10.1002/asia.201900476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/03/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| | - Ruikang Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| | - Can Li
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| | - Shao Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
37
|
Wang YZ, Zhang HR, Zhou L, Fang JD, Liu XY. Photoredox-catalyzed sulfenylation/cyclization of N-aryl-N-tosylpropargylamine with disulfide: A concise route to 3-phenylthioquinoline. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Mechanistic and experimental study on copper-catalyzed C3-sulfenylation of indoles with sulfur powder and aryl iodides. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
39
|
Chen L, Noory Fajer A, Yessimbekov Z, Kazemi M, Mohammadi M. Diaryl sulfides synthesis: copper catalysts in C–S bond formation. J Sulphur Chem 2019. [DOI: 10.1080/17415993.2019.1596268] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lian Chen
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, People’s Republic of China
| | - Ali Noory Fajer
- Department of Biology, College of Education, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Zhanibek Yessimbekov
- Department of Technology of Food and Light Industry Products, Shakarim State University of Semey, Semey, Kazakhstan
| | - Mosstafa Kazemi
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| |
Collapse
|
40
|
Gao YC, Huang ZB, Xu L, Li ZD, Lai ZS, Tang RY. Iodine-promoted radical alkyl sulfuration of imidazopyridines with dialkyl azo compounds and elemental sulfur. Org Biomol Chem 2019; 17:2279-2286. [PMID: 30724304 DOI: 10.1039/c8ob03191f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dialkyl azo compounds were found to be effective alkyl radical sources for direct alkyl sulfuration with imidazopyridines using elemental sulfur under metal-free conditions. Iodine, an inexpensive and mild reagent, could promote alkyl sulfuration. A variety of quaternary cyanoalkyl radicals were successfully coupled with elemental sulfur. A subsequent C-H sulfuration of imidazopyridines afforded a diverse array of imidazopyridine derivatives bearing cyanoalkylthio groups. The cyano group could be modified and further underwent condensation with 2-aminothiazole to afford an interesting heterocyclic amide. Control experiments showed that iodine could greatly suppress the self-coupling of cyanoalkyl radicals, thus making the sulfuration proceed smoothly.
Collapse
Affiliation(s)
- Yong-Chao Gao
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | | | | | | | | | | |
Collapse
|
41
|
Yu Y, Zhou Y, Song Z, Liang G. An efficient t-BuOK promoted C3-chalcogenylation of indoles with dichalcogenides. Org Biomol Chem 2019; 16:4958-4962. [PMID: 29947393 DOI: 10.1039/c8ob00948a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A versatile and efficient method for the synthesis of 3-chalcogenyl-indoles from indoles and dichalcogenides employing t-BuOK as a promoter at room temperature has been achieved. The present protocol exhibited a broad functional group tolerance. Diverse 3-sulfenyl- and 3-selenyl-indoles were rapidly obtained in good to excellent yields with high regioselectivities. It is noteworthy that this transformation was applicable to N-protected and N-unprotected indoles, allowing N-deprotection and C3-chalcogenylation of indoles in one step.
Collapse
Affiliation(s)
- Yuanzu Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | | | | | | |
Collapse
|
42
|
Equbal D, Singh R, Saima, Lavekar AG, Sinha AK. Synergistic Dual Role of [hmim]Br-ArSO2Cl in Cascade Sulfenylation–Halogenation of Indole: Mechanistic Insight into Regioselective C–S and C–S/C–X (X = Cl and Br) Bond Formation in One Pot. J Org Chem 2019; 84:2660-2675. [DOI: 10.1021/acs.joc.8b03097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Danish Equbal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031 India
| | - Richa Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031 India
| | - Saima
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001 India
| | - Aditya G. Lavekar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001 India
| | - Arun K. Sinha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001 India
| |
Collapse
|
43
|
Palladium(II)/Copper(II)-Catalyzed C-H Sulfidation or Selenation of Arenes Leading to Unsymmetrical Sulfides and Selenides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Zhang J, Song C, Sheng L, Liu P, Sun P. Annulation of 1-(2-Aminoaryl)pyrroles, Ethers with Elemental Sulfur To Give 1,3,6-Benzothiadiazepine Derivatives through Double C–S Bond Formation and C–O Cleavage of Ethers. J Org Chem 2019; 84:2191-2199. [DOI: 10.1021/acs.joc.8b03187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Zhang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Chuwen Song
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Linfeng Sheng
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
45
|
Zhou P, Huang Y, Wu W, Yu W, Li J, Zhu Z, Jiang H. Direct access to bis-S-heterocyclesviacopper-catalyzed three component tandem cyclization using S8as a sulfur source. Org Biomol Chem 2019; 17:3424-3432. [DOI: 10.1039/c9ob00377k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An elemental sulfur atom donor strategy for constructing a thiophene-fused thiazole bis-S-heterocyclic skeletonviaCu-catalyzed three-component tandem cyclization has been developed.
Collapse
Affiliation(s)
- Peiqi Zhou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Yubing Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Wentao Yu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Zhongzhi Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
46
|
Deng JC, Zhang JR, Li MH, Huang JC, Lai ZS, Tong XY, Cui ZN, Tang RY. Direct thiocarbamation of imidazoheterocycles via dual C–H sulfurization. Org Biomol Chem 2019; 17:7854-7857. [DOI: 10.1039/c9ob01403a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Direct thiocarbamation via dual C–H sulfurization.
Collapse
Affiliation(s)
- Jian-Chao Deng
- Department of Applied Chemistry
- College of Materials and Energy
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
- South China Agricultural University
- Guangzhou 510642
| | - Jun-Rong Zhang
- Department of Applied Chemistry
- College of Materials and Energy
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
- South China Agricultural University
- Guangzhou 510642
| | - Ming-Hua Li
- Department of Applied Chemistry
- College of Materials and Energy
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
- South China Agricultural University
- Guangzhou 510642
| | - Jie-Cheng Huang
- Department of Applied Chemistry
- College of Materials and Energy
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
- South China Agricultural University
- Guangzhou 510642
| | - Zhi-Sheng Lai
- Department of Applied Chemistry
- College of Materials and Energy
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
- South China Agricultural University
- Guangzhou 510642
| | - Xin-Yu Tong
- Department of Applied Chemistry
- College of Materials and Energy
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
- South China Agricultural University
- Guangzhou 510642
| | - Zi-Ning Cui
- Department of Applied Chemistry
- College of Materials and Energy
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
- South China Agricultural University
- Guangzhou 510642
| | - Ri-Yuan Tang
- Department of Applied Chemistry
- College of Materials and Energy
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
- South China Agricultural University
- Guangzhou 510642
| |
Collapse
|
47
|
Das A, Maity M, Malcherek S, König B, Rehbein J. Synthesis of aryl sulfides via radical-radical cross coupling of electron-rich arenes using visible light photoredox catalysis. Beilstein J Org Chem 2018; 14:2520-2528. [PMID: 30344775 PMCID: PMC6176842 DOI: 10.3762/bjoc.14.228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Electron-rich arenes react with aryl and alkyl disulfides in the presence of catalytic amounts of [Ir(dF(CF3)ppy)2(dtbpy)]PF6 and (NH4)2S2O8 under blue light irradiation to yield arylthiols. The reaction proceeds at room temperature and avoids the use of prefunctionalized arenes. Experimental evidence suggests a radical–radical cross coupling mechanism.
Collapse
Affiliation(s)
- Amrita Das
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Mitasree Maity
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Simon Malcherek
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Burkhard König
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Julia Rehbein
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
48
|
Tan Z, Liang Y, Yang J, Cao L, Jiang H, Zhang M. Site-Specific Oxidative C–H Chalcogenation of (Hetero)Aryl-Fused Cyclic Amines Enabled by Nanocobalt Oxides. Org Lett 2018; 20:6554-6558. [DOI: 10.1021/acs.orglett.8b02889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenda Tan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, People’s Republic of China
| | - Yantang Liang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, People’s Republic of China
| | - Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, People’s Republic of China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, People’s Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, People’s Republic of China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, People’s Republic of China
| |
Collapse
|
49
|
Xiao G, Min H, Zheng Z, Deng G, Liang Y. Copper-catalyzed three-component reaction of imidazo[1,2-a]pyridine with elemental sulfur and arylboronic acid to produce sulfenylimidazo[1,2-a]pyridines. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Iida H, Demizu R, Ohkado R. Tandem Flavin-Iodine-Catalyzed Aerobic Oxidative Sulfenylation of Imidazo[1,2-a]Pyridines with Thiols. J Org Chem 2018; 83:12291-12296. [DOI: 10.1021/acs.joc.8b01878] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Ryuta Demizu
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|