1
|
Badeji AA, Liu Y, Oladipo SD, Osinubi AD. Computational insights into the mechanisms and origins of switchable selectivity in gold(i)-catalyzed annulation of ynamides with isoxazoles via 6π-electrocyclizations of azaheptatrienyl cations. RSC Adv 2023; 13:18025-18037. [PMID: 37323448 PMCID: PMC10265590 DOI: 10.1039/d3ra02839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Electrocyclizations of acyclic conjugated π-motifs have emerged as a versatile and effective strategy for accessing various ring systems with excellent functional group tolerability and controllable selectivity. Typically, the realization of 6π-electrocyclization of heptatrienyl cations to afford seven-membered motif has proven difficult due to the high-energy state of the cyclizing seven-membered intermediate. Instead, it undergoes the Nazarov cyclization, affording a five-membered pyrrole product. However, the incorporation of a Au(i)-catalyst, a nitrogen atom and tosylamide group in the heptatrienyl cations unexpectedly circumvented the aforementioned high energy state to afford a seven-membered azepine product via 6π-electrocyclization in the annulation of 3-en-1-ynamides with isoxazoles. Therefore, extensive computational studies were carried out to investigate the mechanism of Au(i)-catalyzed [4+3] annulation of 3-en-1-ynamides with dimethylisoxazoles to produce a seven-membered 4H-azepine via the 6π-electrocyclization of azaheptatrienyl cations. Computational results showed that after the formation of the key α-imino gold carbene intermediate, the annulation of 3-en-1-ynamides with dimethylisoxazole occurs via the unusual 6π-electrocyclization to afford a seven-membered 4H-azepine exclusively. However, the annulation of 3-cyclohexen-1-ynamides with dimethylisoxazole occurs via the commonly proposed aza-Nazarov cyclization pathway to majorly generate five-membered pyrrole derivatives. The results from the DFT predictive analysis revealed that the key factors responsible for the different chemo-, and regio-selectivities observed are the cooperating effect of the tosylamide group on C1, the uninterrupted π-conjugation pattern of the α-imino gold(i) carbene and the substitution pattern at the cyclization termini. The Au(i)-catalyst is believed to assist in the stabilization of the azaheptatrienyl cation.
Collapse
Affiliation(s)
| | - Yuan Liu
- School of Chemistry and Chemical Engineering, Nantong University 9 Seyuan Road Nantong 226019 China
| | - Segun D Oladipo
- Department of Chemical Sciences, Olabisi Onabanjo University 2002 Ago-Iwoye Nigeria
| | | |
Collapse
|
2
|
Iftikhar R, Mazhar A, Iqbal MS, Khan FZ, Askary SH, Sibtain H. Ring forming transformations of ynamides via cycloaddition. RSC Adv 2023; 13:10715-10756. [PMID: 37025669 PMCID: PMC10072253 DOI: 10.1039/d3ra00139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Ynamides are N-alkyne compounds bearing an electron withdrawing group at the nitrogen atom. They offer unique pathways for the construction of versatile building blocks owing to their exceptional balance between reactivity and stability. Recently several studies have been reported that explore and illustrate the synthetic potential of ynamides and ynamide-derived advanced intermediates in cycloadditions with different reaction partners to yield heterocyclic cycloadducts of synthetic and pharmaceutical value. Cycloaddition reactions of ynamides are the facile and preferable routes for the construction of structural motifs having striking importance in synthetic, medicinal chemistry, and advanced materials. In this systematic review, we highlighted the recently reported novel transformations and synthetic applications that involved the cycloaddition reaction of ynamides. The scope along with the limitations of the transformations are discussed in detail.
Collapse
Affiliation(s)
- Ramsha Iftikhar
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aqsa Mazhar
- Faculty of Health and Medicine, University of New South Wales 2033-Sydney Australia
| | - Muhammad Saqlain Iqbal
- Department of Electrical Information Engineering, Polytechnic University of Bari 70126-Bari Italy
| | - Faiza Zahid Khan
- Institute of Chemistry, RheinischeFriedrich-Wilhelms-Universität Bonn Bonn Germany
| | - Syed Hassan Askary
- Department of Chemistry, University of Management and Technology 54770-Lahore Pakistan
| | - Hifza Sibtain
- Department of Chemistry, University of Management and Technology 54770-Lahore Pakistan
| |
Collapse
|
3
|
Suárez‐Rodríguez T, Suárez‐Sobrino ÁL, Ballesteros A. Gold(I)-Catalyzed Intermolecular Formal [4+2] Cycloaddition of O-Aryl Ynol Ethers and Enol Ethers: Synthesis of Chromene Derivatives. Chemistry 2021; 27:13079-13084. [PMID: 34278626 PMCID: PMC8518403 DOI: 10.1002/chem.202102534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Gold(I)-catalyzed formal [4+2] cycloaddition of O-aryl ynol ethers 1 and enol ethers 2 is described. This intermolecular reaction between two electron-rich unsaturated systems takes place, under mild conditions, in the presence of 5 mol% [IPrAu(CH3 CN)]SbF6 as catalyst giving chromene derivatives with good yields. The cycloaddition is completely regio- and stereoselective, as well as versatile for both reactives. Silyl enol ethers can also react in the same way and under the same reaction conditions with quantitative yields. A plausible mechanism through a selective addition of the enol ether to the alkyne gold activated complex followed by an intramolecular aromatic electrophilic substitution is proposed. Several experimental results support the presence of a cationic oxonium intermediate prior to the aromatic substitution. The reaction represents a new entry to the chromene core.
Collapse
Affiliation(s)
- Tatiana Suárez‐Rodríguez
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| | - Ángel L. Suárez‐Sobrino
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| | - Alfredo Ballesteros
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| |
Collapse
|
4
|
Shandilya S, Protim Gogoi M, Dutta S, Sahoo AK. Gold-Catalyzed Transformation of Ynamides. CHEM REC 2021; 21:4123-4149. [PMID: 34432929 DOI: 10.1002/tcr.202100159] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Indexed: 11/07/2022]
Abstract
Ynamide, a unique species with inherited polarization of nitrogen lone pair electron to triple bond, has been largely used for the developement of novel synthetic methods and the construction of unusual N-bearing heterocycles. The reaction versatility of ynamide on umpolung reactivity, radical reactions and asymmetric synthesis have been recently reviewed. This review provides an overall scenic view into the gold catalyzed transformation of ynamides. The ynamides reactivity towards nitrogen-transfer reagents, such as azides, nitrogen ylides, isoxazoles, and anthranils; oxygen atom-transfer reagents, like nitrones, sulfoxides, and pyridine N-oxides; and carbon nucleophiles under gold catalysis are herein uncovered. The scope as well the mechanistic insights of each reaction is also briefed.
Collapse
Affiliation(s)
| | | | - Shubham Dutta
- School of Chemistry, University of Hyderabad, 500046, Hyderabad, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, 500046, Hyderabad, India
| |
Collapse
|
5
|
Simm PE, Sekar P, Richardson J, Davies PW. Gold(I)-Catalyzed Synthesis of 3-Sulfenyl Pyrroles and Indoles by a Regioselective Annulation of Alkynyl Thioethers. ACS Catal 2021; 11:6357-6362. [PMID: 34306808 PMCID: PMC8291588 DOI: 10.1021/acscatal.1c01457] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Indexed: 01/01/2023]
Abstract
![]()
The combination of
nucleophilic nitrenoids and π-acid catalysis
has emerged as a powerful tool in heterocycle synthesis. Accessing
more varied heterocycle-substitution patterns by maintaining the same
reaction pathways across different alkynes remains a challenge. Here
we show that Au(I) catalysis of isoxazole-based nitrenoids with alkynyl
thioethers provides controlled access to (3 + 2) annulation by a regioselective
addition β to the sulfenyl group. The reaction with isoxazole-containing
nitrenoids delivers sulfenylated pyrroles and indoles as single regioisomers
bearing useful functional groups and structural variety.
Collapse
Affiliation(s)
- Peter E. Simm
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Prakash Sekar
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | | | - Paul W. Davies
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
6
|
Suárez-Rodríguez T, Suárez-Sobrino ÁL, Ballesteros A. Gold(I)-Catalyzed [8+2]-Cycloaddition of 8-Aryl-8-azaheptafulvenes with Allenamides and Ynamides: Regioselective Synthesis of Dihydrocycloheptapyrrole Derivatives. Chemistry 2021; 27:7154-7159. [PMID: 33567146 DOI: 10.1002/chem.202005348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 01/01/2023]
Abstract
Gold(I)-catalyzed higher-order [8+2] cycloadditions of 8-aryl-8-azaheptafulvenes 1 with allenamides 2 and ynamides 3 were studied. 1,8-Dihydrocycloheptapyrroles 4 were achieved by a regioselective [8+2] cycloaddition of azaheptafulvenes 1 and allenamides 2 in the presence of (2,4-ditBuC6 H3 O)3 PAuNTf2 as catalyst. Besides, ynamides 3 and 8-aryl-8-azaheptafulvenes 1, undergo a regioselective [8+2] cycloaddition, to give 2-amido-1,4-dihydrocycloheptapyrroles 7 in the presence of JohnPhosAuNTf2 as catalyst. Both reactions take place with good yields and with a variety of substituents. A plausible mechanism hypothesis suggests a nucleophilic attack of the 8-azaheptafulvene to the gold activated electron rich allene or alkyne moieties of the allenamide and ynamide, respectively.
Collapse
Affiliation(s)
- Tatiana Suárez-Rodríguez
- Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Ángel L Suárez-Sobrino
- Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Alfredo Ballesteros
- Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
7
|
Hu YC, Zhao Y, Wan B, Chen QA. Reactivity of ynamides in catalytic intermolecular annulations. Chem Soc Rev 2021; 50:2582-2625. [PMID: 33367365 DOI: 10.1039/d0cs00283f] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ynamides are unique alkynes with a carbon-carbon triple bond directly attached to the nitrogen atom bearing an electron-withdrawing group. The alkyne is strongly polarized by the electron-donating nitrogen atom, but its high reactivity can be finely tempered by the electron-withdrawing group. Accordingly, ynamides are endowed with both nucleophilic and electrophilic properties and their chemistry has been an active research field. The catalytic intermolecular annulations of ynamides, featuring divergent assembly of structurally important amino-heterocycles in a regioselective manner, have gained much attention over the past decade. This review aims to provide a comprehensive summary of the advances achieved in this area involving transition metal and acid catalysis. Moreover, the intermolecular annulations of ynamide analogs including ynol ethers and thioalkynes are also discussed, which can provide insights into the reactivity difference caused by the heteroatoms.
Collapse
Affiliation(s)
- Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Yingying Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
8
|
Zhu B, Zhu L, Xia J, Huang S, Huang X. Gold-catalyzed cycloisomerization of enynamides: Regio- and stereoselective approach to tetracyclic spiroindolines. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Gold-Catalyzed Reactions of Specially Activated Alkynes, Allenes, and Alkenes. Chem Rev 2020; 121:8756-8867. [DOI: 10.1021/acs.chemrev.0c00788] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - David F. León Rayo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| |
Collapse
|
10
|
Caiuby CAD, de Jesus MP, Burtoloso ACB. α-Imino Iridium Carbenes from Imidoyl Sulfoxonium Ylides: Application in the One-Step Synthesis of Indoles. J Org Chem 2020; 85:7433-7445. [DOI: 10.1021/acs.joc.0c00833] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Clarice A. D. Caiuby
- Instituto de Quı́mica de São Carlos, Universidade de São Paulo, CEP, 13560-970 São Carlos, SP, Brazil
| | - Matheus P. de Jesus
- Instituto de Quı́mica de São Carlos, Universidade de São Paulo, CEP, 13560-970 São Carlos, SP, Brazil
| | - Antonio C. B. Burtoloso
- Instituto de Quı́mica de São Carlos, Universidade de São Paulo, CEP, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
11
|
Zhang Z, Fu B, Wang H, Chen H, Tu Y, Zhao J. Access to ( Z)-1,2-Endiamides and 1,1-Endiamides via a Base-Promoted Tandem Reaction. J Org Chem 2020; 85:5245-5254. [PMID: 32207944 DOI: 10.1021/acs.joc.9b03305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient base-promoted tandem reaction between vinyl 1,1-dichlorides and secondary sulfonamides with ynamide as the key intermediate is described. This method provides a facile approach to (Z)-1,2-endiamide and aryl 1,1-endiamide derivatives via the β-hydroamidation of terminal ynamides and the α-hydroamidation of internal ynamides, respectively. This reaction proceeded through double elimination of vinyl chlorides and double addition of nucleophiles to alkynes. In addition, it features readily available starting materials, mild reaction conditions, a broad substrate scope, a wide functional group tolerance, and an operational convenience.
Collapse
Affiliation(s)
- Zhenming Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Bei Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Han Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Yongliang Tu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Junfeng Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| |
Collapse
|
12
|
Arce EM, Lamont SG, Davies PW. Sulfenyl Ynamides in Gold Catalysis: Synthesis of Oxo‐functionalised 4‐aminoimidazolyl Fused Compounds by Intermolecular Annulation Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Elsa M. Arce
- Haworth Building, School of ChemistryUniversity of Birmingham, Edgbaston. Birmingham B15 2TT U.K
| | - Scott G. Lamont
- Medicinal Chemistry, Research and Early DevelopmentOncology R&D, AstraZeneca Cambridge CB10 1XL UK
| | - Paul W. Davies
- Haworth Building, School of ChemistryUniversity of Birmingham, Edgbaston. Birmingham B15 2TT U.K
| |
Collapse
|
13
|
Liu J, Zhu L, Wan W, Huang X. Gold-Catalyzed Oxidative Cascade Cyclization of 1,3-Diynamides: Polycyclic N-Heterocycle Synthesis via Construction of a Furopyridinyl Core. Org Lett 2020; 22:3279-3285. [PMID: 32242410 DOI: 10.1021/acs.orglett.0c01086] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A facile and practical approach to construct a furopyridinyl motif through a gold-catalyzed cascade cyclization of easily accessible diynamides is described. This strategy offers a straightforward approach to furo[2,3-c]isoquinoline and 6H-furo[3',2':5,6]pyrido[3,4-b]indole derivatives. The reaction could build up four new bonds and two additional heteroaromatic rings via a single operation. The heterocyclic products show promising blue luminous performance with fluorescence quantum yields up to 75%.
Collapse
Affiliation(s)
- Jibing Liu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Tian X, Song L, Hashmi ASK. α-Imino Gold Carbene Intermediates from Readily Accessible Sulfilimines: Intermolecular Access to Structural Diversity. Chemistry 2020; 26:3197-3204. [PMID: 31793680 PMCID: PMC7154771 DOI: 10.1002/chem.201904869] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/01/2019] [Indexed: 11/16/2022]
Abstract
Catalytic approaches to pharmaceutically important bioactive skeletons through gold carbene intermediates have experienced a dramatic development in the last decade. Although various carbene precursors continue to play an important role in heterocyclic syntheses, these reagents are associated with some drawbacks in terms of functional group tolerance, synthetic methods and safety limitations. A new generation of nitrene transfer reagents was established in 2019: the sulfilimines. These are safe, inexpensive and readily available. They can conveniently be stored and handled, and thus represent ideal reagents for the fast and modular modification of scaffolds and the preparation of libraries by intermolecular reactions of two components. Both the practical methods for synthesizing sulfilimines and the versatility of these ylidic species in gold-catalyzed preparation of structural diversity, for both heterocycles and carbocycles, will be outlined in this Concept article.
Collapse
Affiliation(s)
- Xianhai Tian
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lina Song
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
15
|
Easy access to pharmaceutically relevant heterocycles by catalytic reactions involving α-imino gold carbene intermediates. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1874-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tong-De Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingzhou Shang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Tian X, Song L, Rudolph M, Rominger F, Hashmi ASK. Synthesis of 2-Aminoindoles through Gold-Catalyzed C–H Annulations of Sulfilimines with N-Arylynamides. Org Lett 2019; 21:4327-4330. [DOI: 10.1021/acs.orglett.9b01501] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xianhai Tian
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Lina Song
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Matthias Rudolph
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Frank Rominger
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - A. Stephen K. Hashmi
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Tian X, Song L, Han C, Zhang C, Wu Y, Rudolph M, Rominger F, Hashmi ASK. Gold(III)-Catalyzed Formal [3 + 2] Annulations of N-Acyl Sulfilimines with Ynamides for the Synthesis of 4-Aminooxazoles. Org Lett 2019; 21:2937-2940. [DOI: 10.1021/acs.orglett.9b01011] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xianhai Tian
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Lina Song
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Chunyu Han
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Cheng Zhang
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Yufeng Wu
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Matthias Rudolph
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Frank Rominger
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - A. Stephen K. Hashmi
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Praveen C. Dexterity of gold catalysis in controlling the regioselectivity of cycloaddition reactions. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2019. [DOI: 10.1080/01614940.2019.1594016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Chandrasekar Praveen
- Materials Electrochemistry Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi, Tamil Nadu, India
| |
Collapse
|
20
|
Liu J, Chakraborty P, Zhang H, Zhong L, Wang ZX, Huang X. Gold-Catalyzed Atom-Economic Synthesis of Sulfone-Containing Pyrrolo[2,1-a]isoquinolines from Diynamides: Evidence for Consecutive Sulfonyl Migration. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04934] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jibing Liu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pushkin Chakraborty
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Heng Zhang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zhong
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Aguilar E, Santamaría J. Gold-catalyzed heterocyclic syntheses through α-imino gold carbene complexes as intermediates. Org Chem Front 2019. [DOI: 10.1039/c9qo00243j] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review reports a comprehensive compilation of gold-catalyzed heterocyclic synthesis by using α-imino gold carbene complexes as the proposed intermediates.
Collapse
Affiliation(s)
- Enrique Aguilar
- Instituto Universitario de Química Organometálica “Enrique Moles”
- Departamento de Química Orgánica e Inorgánica
- Universidad de Oviedo
- Oviedo
- Spain
| | - Javier Santamaría
- Instituto Universitario de Química Organometálica “Enrique Moles”
- Departamento de Química Orgánica e Inorgánica
- Universidad de Oviedo
- Oviedo
- Spain
| |
Collapse
|
22
|
Allegue D, González J, Fernández S, Santamaría J, Ballesteros A. Regiodivergent Control in the Gold(I) Catalyzed Synthesis of 7-Pyrazolylindoles from 1-Propargyl-1H
-benzotriazoles and Ynamides through α-Imino Gold(I) Carbene Complexes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801484] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Darío Allegue
- Instituto Universitario de Química Organometálica “Enrique Moles”; Departamento de Química Orgánica e Inorgánica Universidad de Oviedo; c/ Julián Clavería 8 33007 Oviedo Spain
| | - Jairo González
- Instituto Universitario de Química Organometálica “Enrique Moles”; Departamento de Química Orgánica e Inorgánica Universidad de Oviedo; c/ Julián Clavería 8 33007 Oviedo Spain
| | - Sergio Fernández
- Instituto Universitario de Química Organometálica “Enrique Moles”; Departamento de Química Orgánica e Inorgánica Universidad de Oviedo; c/ Julián Clavería 8 33007 Oviedo Spain
| | - Javier Santamaría
- Instituto Universitario de Química Organometálica “Enrique Moles”; Departamento de Química Orgánica e Inorgánica Universidad de Oviedo; c/ Julián Clavería 8 33007 Oviedo Spain
| | - Alfredo Ballesteros
- Instituto Universitario de Química Organometálica “Enrique Moles”; Departamento de Química Orgánica e Inorgánica Universidad de Oviedo; c/ Julián Clavería 8 33007 Oviedo Spain
| |
Collapse
|
23
|
Kita Y, Yata T, Nishimoto Y, Chiba K, Yasuda M. Selective oxymetalation of terminal alkynes via 6- endo cyclization: mechanistic investigation and application to the efficient synthesis of 4-substituted isocoumarins. Chem Sci 2018; 9:6041-6052. [PMID: 30079217 PMCID: PMC6053900 DOI: 10.1039/c8sc01537f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/13/2018] [Indexed: 01/05/2023] Open
Abstract
The cyclization of heteroatom-containing alkynes with π acidic metal salts is an attractive method to prepare heterocycles because the starting materials are readily available and the organometallic compounds are useful synthetic intermediates. A new organometallic species in the heterocyclization provides an opportunity to synthesize heterocycles that are difficult to obtain. Herein, we describe a novel cyclic oxymetalation of 2-alkynylbenzoate with indium or gallium salts that proceeds with an unusual regioselectivity to give isocoumarins bearing a carbon-metal bond at the 4-position. This new type of metalated isocoumarin provided 3-unsubstituted isocoumarins that have seldom been investigated despite their important pharmacological properties. Indium and gallium salts showed high performance in the selective 6-endo cyclization of terminal alkynes while boron or other metals such as Al, Au, and Ag caused 5-exo cyclization or decomposition of terminal alkynes, respectively. The metalated isocoumarin and its reaction intermediate were unambiguously identified by X-ray crystallographic analysis. The theoretical calculation of potential energy profiles showed that oxyindation could proceed via 6-endo cyclization under thermodynamic control while previously reported oxyboration would give a 5-membered ring under kinetic control. The investigation of electrostatic potential maps suggested that the differences in the atomic characters of indium, boron and their ligands would contribute to such a regioselective switch. The metalated isocoumarins were applied to organic synthetic reactions. The halogenation of metalated isocoumarins proceeded to afford 4-halogenated isocoumarins bearing various functional groups. The palladium-catalyzed cross coupling of organometallic species with organic halides gave various 4-substituted isocoumarins. A formal total synthesis of oosponol, which exhibits strong antifungal activity, was accomplished.
Collapse
Affiliation(s)
- Yuji Kita
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka, Suita , Osaka 565-0871 , Japan .
| | - Tetsuji Yata
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka, Suita , Osaka 565-0871 , Japan .
| | - Yoshihiro Nishimoto
- Frontier Research Base for Global Young Researchers Center for Open Innovation Research and Education (COiRE) , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka, Suita , Osaka 565-0871 , Japan .
| | - Kouji Chiba
- Material Science Division , MOLSIS Inc. , 1-28-38 Shinkawa, Chuo-ku , Tokyo 104-0033 , Japan
| | - Makoto Yasuda
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka, Suita , Osaka 565-0871 , Japan .
| |
Collapse
|
24
|
Lin M, Zhu L, Xia J, Yu Y, Chen J, Mao Z, Huang X. Gold-Catalyzed Oxidative Cyclization of Tryptamine Derived Enynamides: A Stereoselective Approach to Tetracyclic Spiroindolines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Meijun Lin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Center for Excellence in Molecular Synthesis; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 People's Republic of China
- College of Chemistry and Chemical Engineering; Fujian Normal University; Fuzhou Fujian 350007 People's Republic of China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Center for Excellence in Molecular Synthesis; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Jiajin Xia
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Center for Excellence in Molecular Synthesis; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Center for Excellence in Molecular Synthesis; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 People's Republic of China
| | - Jianxin Chen
- College of Chemistry and Chemical Engineering; Fujian Normal University; Fuzhou Fujian 350007 People's Republic of China
| | - Zhifeng Mao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Center for Excellence in Molecular Synthesis; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 People's Republic of China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Center for Excellence in Molecular Synthesis; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| |
Collapse
|
25
|
Cai J, Wu B, Rong G, Zhang C, Qiu L, Xu X. Gold-catalyzed Bicyclization of Diaryl Alkynes: Synthesis of Polycyclic Fused Indole and Spirooxindole Derivatives. Org Lett 2018; 20:2733-2736. [DOI: 10.1021/acs.orglett.8b00939] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ju Cai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Bing Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Guangwei Rong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Cheng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lihua Qiu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinfang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
26
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Zhao Y, Wang C, Hu Y, Wan B. Brønsted acid-catalyzed formal [5+2+1] cycloaddition of ynamides and isoxazoles with water: access to oxygen-bridged tetrahydro-1,4-oxazepines. Chem Commun (Camb) 2018; 54:3963-3966. [DOI: 10.1039/c8cc00881g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unique property of the Brønsted acid, as well as introducing a small amount of water, shows distinct chemoselectivity from the corresponding gold-catalyzed cycloadditions.
Collapse
Affiliation(s)
- Yingying Zhao
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
- University of Chinese Academy of Sciences
| | - Chunxiang Wang
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Yancheng Hu
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Boshun Wan
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
28
|
Pan D, Wei Y, Shi M. Rh(II)-Catalyzed Chemoselective Oxidative Amination and Nucleophilic Trapping of gem-Dimethyl Alkynyl-Tethered Sulfamates. Org Lett 2017; 20:84-87. [DOI: 10.1021/acs.orglett.7b03425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dong Pan
- State Key Laboratory of Organometallic
Chemistry, Center for Excellence in Molecular Synthesis, University
of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic
Chemistry, Center for Excellence in Molecular Synthesis, University
of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic
Chemistry, Center for Excellence in Molecular Synthesis, University
of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
29
|
Reddy RJ, Ball‐Jones MP, Davies PW. Alkynyl Thioethers in Gold-Catalyzed Annulations To Form Oxazoles. Angew Chem Int Ed Engl 2017; 56:13310-13313. [PMID: 28841255 PMCID: PMC5656920 DOI: 10.1002/anie.201706850] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 11/29/2022]
Abstract
Non-oxidative, regioselective, and convergent access to densely functionalized oxazoles is realized in a functional-group tolerant manner using alkynyl thioethers. Sulfur-terminated alkynes provide access to reactivity previously requiring strong donor-substituted alkynes such as ynamides. Sulfur does not act in an analogous donor fashion in this gold-catalyzed reaction, thus leading to complementary regioselective outcomes and addressing the limitations of using ynamides.
Collapse
|
30
|
Liao Y, Lu Q, Chen G, Yu Y, Li C, Huang X. Rhodium-Catalyzed Azide–Alkyne Cycloaddition of Internal Ynamides: Regioselective Assembly of 5-Amino-Triazoles under Mild Conditions. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02558] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yun Liao
- Key
Laboratory of Coal to Ethylene Glycol and Its Related Technology,
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Qianqian Lu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Gui Chen
- Key
Laboratory of Coal to Ethylene Glycol and Its Related Technology,
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yinghua Yu
- Key
Laboratory of Coal to Ethylene Glycol and Its Related Technology,
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Chunsen Li
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xueliang Huang
- Key
Laboratory of Coal to Ethylene Glycol and Its Related Technology,
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
31
|
Reddy RJ, Ball-Jones MP, Davies PW. Alkynyl Thioethers in Gold-Catalyzed Annulations To Form Oxazoles. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706850] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Paul W. Davies
- School of Chemistry; University of Birmingham; Birmingham UK
| |
Collapse
|
32
|
Zeng Z, Jin H, Xie J, Tian B, Rudolph M, Rominger F, Hashmi ASK. α-Imino Gold Carbenes from 1,2,4-Oxadiazoles: Atom-Economical Access to Fully Substituted 4-Aminoimidazoles. Org Lett 2017; 19:1020-1023. [PMID: 28218539 DOI: 10.1021/acs.orglett.7b00001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel and atom-economical synthesis of fully substituted 4-aminoimidazoles via gold-catalyzed selective [3 + 2] annulation of 1,2,4-oxadiazoles with ynamides is reported. This protocol represents a new strategy to access α-imino gold carbenes, which corresponds to an unprecedented intermolecular transfer of N-acylimino nitrenes to ynamides. Moreover, the reaction proceeds with 100% atom economy, exhibits good functional group tolerance, and can be conducted in gram scale.
Collapse
Affiliation(s)
- Zhongyi Zeng
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Hongming Jin
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jin Xie
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Bing Tian
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.,Chemistry Department, Faculty of Science, King Abdulaziz University (KAU) , 21589 Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Cheng X, Zhu L, Lin M, Chen J, Huang X. Rapid access to cyclopentadiene derivatives through gold-catalyzed cycloisomerization of ynamides with cyclopropenes by preferential activation of alkenes over alkynes. Chem Commun (Camb) 2017; 53:3745-3748. [DOI: 10.1039/c7cc01368j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Double bond activation: the current transformation represents a rare example of preferential activation of alkenes over alkynes under gold catalysis.
Collapse
Affiliation(s)
- Xing Cheng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Meijun Lin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Jianxin Chen
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou
- P. R. China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| |
Collapse
|