1
|
Mansour MA, Hassan GS, Serya RAT, Jaballah MY, Abouzid KAM. Advances in the discovery of activin receptor-like kinase 5 (ALK5) inhibitors. Bioorg Chem 2024; 147:107332. [PMID: 38581966 DOI: 10.1016/j.bioorg.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Activin receptor‑like kinase-5 (ALK5) is an outstanding member of the transforming growth factor-β (TGF-β) family. (TGF-β) signaling pathway integrates pleiotropic proteins that regulate various cellular processes such as growth, proliferation, and differentiation. Dysregulation within the signaling pathway can cause variety of diseases, such as fibrosis, cardiovascular disease, and especially cancer, rendering ALK5 a potential drug target. Hence, various small molecules have been designed and synthesized as potent ALK5 inhibitors. In this review, we shed light on the current ATP-competitive inhibitors of ALK5 through diverse heterocyclic based scaffolds that are in clinical or pre-clinical phases of development. Moreover, we focused on the binding interactions of the compounds to the ATP binding site and the structure-activity relationship (SAR) of each scaffold, revealing new scopes for designing novel candidates with enhanced selectivity and metabolic profiles.
Collapse
Affiliation(s)
- Mai A Mansour
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt.
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Maiy Y Jaballah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt.
| |
Collapse
|
2
|
Zhang J, Yu J, Liu M, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. Small-molecule modulators of tumor immune microenvironment. Bioorg Chem 2024; 145:107251. [PMID: 38442612 DOI: 10.1016/j.bioorg.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
In recent years, tumor immunotherapy, aimed at increasing the activity of immune cells and reducing immunosuppressive effects, has attracted wide attention. Among them, immune checkpoint blocking (ICB) is the most commonly explored therapeutic approach. All approved immune checkpoint inhibitors (ICIs) are clinically effective monoclonal antibodies (mAbs). Compared with biological agents, small-molecule drugs have many unique advantages in tumor immunotherapy. Therefore, they also play an important role. Immunosuppressive signals such as PD-L1, IDO1, and TGF-β, etc. overexpressed in tumor cells form the tumor immunosuppressive microenvironment. In addition, the efficacy of multi-pathway combined immunotherapy has also been reported and verified. Here, we mainly reviewed the mechanism of tumor immunotherapy, analyzed the research status of small-molecule modulators, and discussed drug candidates' structure-activity relationship (SAR). It provides more opportunities for further research to design more immune small-molecule modulators with novel structures.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meijing Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Ejjoummany A, Elie J, El Hakmaoui A, Akssira M, Routier S, Buron F. Access and Modulation of Substituted Pyrrolo[3,4- c]pyrazole-4,6-(2 H,5 H)-diones. Molecules 2023; 28:5811. [PMID: 37570778 PMCID: PMC10421423 DOI: 10.3390/molecules28155811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The first access to polyfunctionnalized pyrrolo[3,4-c]pyrazole-4,6-(2H,5H)-dione derivatives is reported. The series were generated from diethyl acetylenedicarboxylate and arylhydrazines, which afforded the key intermediates bearing two functional positions. The annellation to generate the maleimide moiety of the bicycle was studied. Moreover, an efficient palladium-catalyzed C-C and C-N bond formation via Suzuki-Miyaura or Buchwald-Hartwig coupling reactions in C-6 position was investigated from 6-chloropyrrolo[3,4-c]pyrazole-4,6-(2H,5H)-diones. This method provides novel access to various 1,6 di-substituted pyrrolo[3,4-c] pyrazole-4,6-(2H,5H)-diones.
Collapse
Affiliation(s)
- Abdelaziz Ejjoummany
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, BP 6759, CEDEX 2, F-45067 Orléans, France
- Faculté des Sciences et Technique, Université Hassan II-Casablanca, BP 146, Mohammedia 28800, Morocco
| | - Jonathan Elie
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, BP 6759, CEDEX 2, F-45067 Orléans, France
| | - Ahmed El Hakmaoui
- Faculté des Sciences et Technique, Université Hassan II-Casablanca, BP 146, Mohammedia 28800, Morocco
| | - Mohamed Akssira
- Faculté des Sciences et Technique, Université Hassan II-Casablanca, BP 146, Mohammedia 28800, Morocco
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, BP 6759, CEDEX 2, F-45067 Orléans, France
| | - Frédéric Buron
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, BP 6759, CEDEX 2, F-45067 Orléans, France
| |
Collapse
|
4
|
Synthetic advances in C(sp2)-H/N–H arylation of pyrazole derivatives through activation/substitution. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Toman D, Jorda R, Ajani H, Kryštof V, Cankař P. Synthesis of 4-styrylpyrazoles and evaluation of their inhibitory effects on cyclin-dependent kinases. Med Chem 2021; 18:484-496. [PMID: 34365958 DOI: 10.2174/1573406417666210806095710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/02/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cycle-regulating and transcriptional cyclin-dependent kinases (CDKs) are attractive targets in cancer drug development. Several CDK inhibitors have already been obtained or are close to regulatory approval for clinical applications. OBJECTIVE Phenylazopyrazole CAN508 has been described as the first selective CDK9 inhibitor with an IC50 of 350 nM. Since the azo-moiety is not a suitable functionality for drugs due to pharmacological reasons, the preparation of carbo-analogues of CAN508 with similar biological activities is desirable. The present work is focused on the synthesis of carbo-analogues similar to CAN508 and their CDK inhibition activity. METHODS Herein, the synthesis of 21 novel carbo analogues of CAN508 and their intermediates is reported. Subsequently, target compounds 8a - 8u were evaluated for protein kinase inhibition (CDK2/cyclin E, CDK4/cyclin D, CDK9/cyclin T) and antiproliferative activities in cell lines (K562, MCF-7, MV4-11). Moreover, the binding mode of derivative 8s in the active site of CDK9 was revealed by molecular docking. RESULTS Compounds 8a - 8u were obtained from key intermediate 7, which was prepared by linear synthesis involving Vilsmeier-Haack, Knoevenagel, Hunsdiecker, and Suzuki-Miyaura reactions. Styrylpyrazoles 8t and 8u were the most potent CDK9 inhibitors with IC50 values of approximately 1 µM. Molecular modelling suggested binding in the active site of CDK9 and CDK2. The flow cytometric analysis of MV4-11 cells treated with the most active styrylpyrazoles showed a significant G1-arrest. CONCLUSION The prepared styrylpyrazoles showed inhibition activity towards CDKs and can provide a novel chemotype of kinase inhibitors.
Collapse
Affiliation(s)
- Daniel Toman
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc. Czech Republic
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc. Czech Republic
| | - Haresh Ajani
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6. Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc. Czech Republic
| | - Petr Cankař
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc. Czech Republic
| |
Collapse
|
6
|
Kang E, Kim HT, Joo JM. Transition-metal-catalyzed C–H functionalization of pyrazoles. Org Biomol Chem 2020; 18:6192-6210. [DOI: 10.1039/d0ob01265c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review describes recent advances in transition-metal-catalyzed C–H functionalization reactions of pyrazoles to form new C–C and C–heteroatom bonds on the pyrazole ring.
Collapse
Affiliation(s)
- Eunsu Kang
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Hyun Tae Kim
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
7
|
Zhu JN, Wang WK, Jin ZH, Wang QK, Zhao SY. Pyrrolo[3,4- c]pyrazole Synthesis via Copper(Ι) Chloride-Catalyzed Oxidative Coupling of Hydrazones to Maleimides. Org Lett 2019; 21:5046-5050. [PMID: 31247786 DOI: 10.1021/acs.orglett.9b01641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A variety of pyrrolo[3,4- c]pyrazole derivatives from readily available aldehyde hydrazones and maleimides via direct oxidative coupling under radical cascade reaction have been reported. This method offers satisfactory chemical yields and good functional group compatibility. Moreover, this practical approach is catalyzed by CuCl utilizing air as the oxidant and some control experiments were performed to elaborate the mechanism.
Collapse
Affiliation(s)
- Jia-Nan Zhu
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Wen-Kang Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Ze-Hui Jin
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Qian-Kun Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| |
Collapse
|
8
|
Kosar N, Ayub K, Mahmood T. Accurate theoretical method for homolytic cleavage of C Sn bond: A benchmark approach. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Sidhom A, Soulé JF, Doucet H, Allouche F. Reactivity of 5-aminopyrazoles bearing a cyclopropyl group at C3-position in palladium-catalyzed direct C4-arylation. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Řezníčková E, Tenora L, Pospíšilová P, Galeta J, Jorda R, Berka K, Majer P, Potáček M, Kryštof V. ALK5 kinase inhibitory activity and synthesis of 2,3,4-substituted 5,5-dimethyl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazoles. Eur J Med Chem 2017; 127:632-642. [PMID: 28135685 DOI: 10.1016/j.ejmech.2017.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/28/2022]
Abstract
A series of 2,3,4-substituted 5,5-dimethyl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazoles (DPPs) was synthesized and evaluated for their ALK5 inhibition activity. The most potent compounds displayed submicromolar IC50 values for ALK5. Preliminary profiling of one of the most active compounds in a panel of 50 protein kinases revealed its selectivity for ALK5. In cells, the compounds caused dose-dependent dephosphorylation of SMAD2, a well-established substrate of ALK5. In addition, the compounds blocked translocation of SMAD2/3 to nuclei of cells stimulated with TGFβ and the protein remained predominantly in cytoplasm, further confirming their molecular target. Therefore, novel DPP derivatives proved to be active as ALK5 inhibitors.
Collapse
Affiliation(s)
- Eva Řezníčková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Lukáš Tenora
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Pavlína Pospíšilová
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Juraj Galeta
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Radek Jorda
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Milan Potáček
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|