1
|
Feng G, Zhang C, He JY, Cai T, Xu W, Jin J. Cerium Ammonium Nitrate (CAN)-Promoted C(sp 2)-N Coupling of Secondary Amides with Aryl Boronic Acids: Entries to Tertiary Aryl Amides. Org Lett 2025; 27:3501-3505. [PMID: 40173296 DOI: 10.1021/acs.orglett.5c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
A cerium ammonium nitrate (CAN)-promoted C(sp2)-N coupling reaction of secondary amides with aryl boronic acids has been realized, providing a new entry for the construction of structurally diverse tertiary aryl amides, which are widely found in various biologically active molecules. Preliminary mechanistic studies indicated that a radical pathway may be involved in the C(sp2)-N coupling process. Compared with other metal-catalyzed methods, which in some cases require well-designed catalysts, preassembled directing groups, and/or complicated operations, this methodology features a ligand- and directing group-free process, as well as ease of handling.
Collapse
Affiliation(s)
- Gaofeng Feng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
- Shangyu college, Shaoxing University, Shaoxing 312000, China
| | - Chao Zhang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jing-Yao He
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Tao Cai
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Wenzhe Xu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jian Jin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
2
|
Sangkaworn J, Limprasart W, Höfler MV, Gutmann T, Pornsuwan S, Bunchuay T, Tantirungrotechai J. Copper-supported thiol-functionalized cellulose as a paper-based catalyst for imine synthesis. Sci Rep 2025; 15:9893. [PMID: 40121364 PMCID: PMC11929769 DOI: 10.1038/s41598-025-95144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/19/2025] [Indexed: 03/25/2025] Open
Abstract
This study presents an appealing approach to sustainable catalysis using cellulose filter paper as a support for copper-catalyzed reactions. The paper was functionalized with thiol groups through a reaction with thioglycolic acid, which served a dual purpose: partially reducing Cu(II) to Cu(I) and stabilizing active copper species via Cu-S interactions. Spectroscopic analysis confirmed the formation of highly dispersed multi-valent Cu2O/CuO on the thiol-functionalized cellulose, resulting in a highly efficient copper catalyst. This catalyst demonstrated excellent performance in the oxidative coupling of various amines to imines, achieving yields of 39-99% within 10-30 min. A key advantage of this system is its reusability; the catalyst maintained remarkable stability and activity over ten reaction cycles with straightforward recovery. This paper-based catalyst offers a promising strategy for eco-friendly and cost-effective synthetic processes, with significant implications for green chemistry and industrial applications.
Collapse
Affiliation(s)
- Jariyaporn Sangkaworn
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Waranya Limprasart
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Mark Valentin Höfler
- Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg Strasse 8, 64287, Darmstadt, Germany
| | - Torsten Gutmann
- Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg Strasse 8, 64287, Darmstadt, Germany
| | - Soraya Pornsuwan
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Jonggol Tantirungrotechai
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Ren J, Xu J, Kong X, Li J, Li K. Coordinating activation strategy enables 1,2-alkylamidation of alkynes. Chem Sci 2023; 14:11466-11473. [PMID: 37886104 PMCID: PMC10599465 DOI: 10.1039/d3sc03786j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The radical 1,2-difunctionalization reaction of alkynes has been evolved into a versatile approach for expeditiously increasing the complexity of the common feedstock alkyne. However, intermolecular 1,2-carboamidation with general alkyl groups is an unsolved problem. Herein, we show that a coordinating activation strategy could act as an efficient tool for enabling radical 1,2-alkylamidation of alkynes. With the employment of diacyl peroxides as both alkylating reagents and internal oxidants, a large library of β-alkylated enamides is constructed in a three-component manner from readily accessible amides and alkynes. This protocol exhibits broad substrate scope with good functional group compatibility and is amenable for late-stage functionalization of natural molecules and biologically compounds.
Collapse
Affiliation(s)
- Jing Ren
- Biopharmaceutical Research Institute, West China Hospital of Sichuan University 37 Guoxue Alley Chengdu 610041 P. R. China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital of Sichuan University 37 Guoxue Alley Chengdu 610041 P. R. China
| | - Xiangxiang Kong
- Biopharmaceutical Research Institute, West China Hospital of Sichuan University 37 Guoxue Alley Chengdu 610041 P. R. China
| | - Jinlong Li
- Biopharmaceutical Research Institute, West China Hospital of Sichuan University 37 Guoxue Alley Chengdu 610041 P. R. China
| | - Kaizhi Li
- Biopharmaceutical Research Institute, West China Hospital of Sichuan University 37 Guoxue Alley Chengdu 610041 P. R. China
| |
Collapse
|
4
|
Radhika S, Chandravarkar A, Anilkumar G. Cu(ii)-catalyzed C-N coupling of 2-aminobenzothiazoles with boronic acids at room temperature. RSC Adv 2023; 13:17188-17193. [PMID: 37304782 PMCID: PMC10248544 DOI: 10.1039/d3ra02979d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
A Cu(ii)-catalyzed, effective C-N coupling of 2-aminobenzothiazoles with boronic acids in acetonitrile under open vessel chemistry was achieved. This protocol demonstrates the N-arylation of 2-aminobenzothiazoles with a broad range of differently substituted phenylboronic acids at room temperature and accomplishes moderate to excellent yields of the desired products. Under the optimized condition, phenylboronic acids bearing halogen at the para and meta positions were found to be more fruitful.
Collapse
Affiliation(s)
- Sankaran Radhika
- School of Chemical Sciences, Mahatma Gandhi University P D Hills P O Kottayam Kerala India 686560
| | - Aravind Chandravarkar
- School of Chemical Sciences, Mahatma Gandhi University P D Hills P O Kottayam Kerala India 686560
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University P D Hills P O Kottayam Kerala India 686560
| |
Collapse
|
5
|
Novel Highly Efficient Green and Reusable Cu(II)/Chitosan-Based Catalysts for the Sonogashira, Buchwald, Aldol, and Dipolar Cycloaddition Reactions. Catalysts 2023. [DOI: 10.3390/catal13010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this study, new Cu(II)/chitosan-based systems were designed via (i) the treatment of chitosan with sodium sulfate (1a) or sodium acetate (1b); (ii) the coating of 1a or 2a with a sodium hyaluronate layer (2a and 2b, correspondingly); (iii) the treatment of a cholesterol–chitosan conjugate with sodium sulfate (3a) or sodium acetate (3b); and (iv) the succination of 1a and 1b to afford 4a and 4b or the succination of 2a and 2b to yield 5a and 5b. The catalytic properties of the elaborated systems in various organic transformations were evaluated. The use of copper sulfate as the source of Cu2+ ions results in the formation of nanoparticles, while the use of copper acetate leads to the generation of conventional coarse-grained powder. Cholesterol-containing systems have proven to be highly efficient catalysts for the cross-coupling reactions of different types (e.g., Sonogashira, Buchwald–Hartwig, and Chan–Lam types); succinated systems coated with a layer of hyaluronic acid are promising catalysts for the aldol reaction; systems containing inorganic copper(II) salt nanoparticles are capable of catalyzing the nitrile-oxide-to-nitrile 1,3-dipolar cycloaddition. The elaborated catalytic systems efficiently catalyze the aforementioned reactions in the greenest solvent available, i.e., water, and the processes could be conducted in air. The studied catalytic reactions proceed selectively, and the isolation of the product does not require column chromatography. The product is separated from the catalyst by simple filtration or centrifugation.
Collapse
|
6
|
Kuliukhina DS, Yakushev AA, Malysheva AS, Averin AD, Beletskaya IP. Synthesis of N,N′-Diaryl Diamines and Oxadiamines via Chan–Lam Amination. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s107042802212003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Jia X, He J. Three copper (II) complexes derived from 2‐methylquinoline and cyclic secondary amines: Synthesis and catalytic application in C‐N bond forming reactions. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xuefeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science Shanxi Normal University Taiyuan Shanxi China
| | - Jieting He
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science Shanxi Normal University Taiyuan Shanxi China
| |
Collapse
|
8
|
Beletskaya IP, Averin AD. Metal-catalyzed reactions for the C(sp2)–N bond formation: achievements of recent years. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review deals with the main catalytic methods for the C(sp2)–N bond formation, including Buchwald–Hartwig palladium-catalyzed amination of aryl and heteroaryl halides, renaissance of the Ullmann chemistry, i.e., the application of catalysis by copper complexes to form the carbon–nitrogen bond, and Chan–Lam reactions of (hetero)arylboronic acids with amines. Also, oxidative amination with C–H activation, which has been booming during the last decade, is addressed. Particular attention is paid to achievements in the application of heterogenized catalysts.
The bibliography includes 350 references.
Collapse
|
9
|
Chandra P. Recent Advancement in the Copper Mediated Synthesis of Heterocyclic Amides as Important Pharmaceutical and Agrochemicals. ChemistrySelect 2021. [DOI: 10.1002/slct.202103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Prakash Chandra
- School of Technology Pandit Deendayal Petroleum University Gandhinagar Gujarat 382007 India
| |
Collapse
|
10
|
Halder P, Roy T, Das P. Recent developments in selective N-arylation of azoles. Chem Commun (Camb) 2021; 57:5235-5249. [PMID: 33908975 DOI: 10.1039/d1cc01265g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transition-metal based carbon-heteroatom (C-X) bond formation has attracted the attention of synthetic chemists over the past few years because the resultant aryl/heteroaryl motifs are important substructures in many natural products, pharmaceuticals, etc. Several efficient protocols such as Buchwald-Hartwig amination, Ullmann coupling, Chan-Lam coupling and metal-free approaches have proved beneficial in C-X bond formation. Selective arylation of one hetero-centre over other centres without protection/deprotection thus allowing minimum synthetic manipulation has been achieved for several substrates using these protocols. Azoles are one such novel five-membered heterocyclic core with huge pharmaceutical applications. Though N-arylation on azole-bearing analogues has been extensively practised, selective N-arylation either on one N-centre or the exocyclic N-site of the azole ring in competition with other hetero-centres in the framework has been recently explored for azole-carrying systems. Thus, this review would focus on recent advances in chemo- and regio-selective N-arylation (either on one N-centre or the exocyclic N-site of the azole ring) on azole-containing frameworks.
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad-826004, India.
| | - Tanumay Roy
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad-826004, India.
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad-826004, India.
| |
Collapse
|
11
|
Vijayan A, Rao DN, Radhakrishnan KV, Lam PYS, Das P. Advances in Carbon–Element Bond Construction under Chan–Lam Cross-Coupling Conditions: A Second Decade. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1705971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCopper-mediated carbon–heteroatom bond-forming reactions involving a wide range of substrates have been in the spotlight for many organic chemists. This review highlights developments between 2010 and 2019 in both stoichiometric and catalytic copper-mediated reactions, and also examples of nickel-mediated reactions, under modified Chan–Lam cross-coupling conditions using various nucleophiles; examples include chemo- and regioselective N-arylations or O-arylations. The utilization of various nucleophiles as coupling partners together with reaction optimization (including the choice of copper source, ligands, base, and other additives), limitations, scope, and mechanisms are examined; these have benefitted the development of efficient and milder methods. The synthesis of medicinally valuable or pharmaceutically important nitrogen heterocycles, including isotope-labeled compounds, is also included. Chan–Lam coupling reaction can now form twelve different C–element bonds, making it one of the most diverse and mild reactions known in organic chemistry.1 Introduction2 Construction of C–N and C–O Bonds2.1 C–N Bond Formation2.1.1 Original Discovery via Stoichiometric Copper-Mediated C–N Bond Formation2.1.2 Copper-Catalyzed C–N Bond Formation2.1.3 Coupling with Azides, Sulfoximines, and Sulfonediimines as Nitrogen Nucleophiles2.1.4 Coupling with N,N-Dialkylhydroxylamines2.1.5 Enolate Coupling with sp3-Carbon Nucleophiles2.1.6 Nickel-Catalyzed Chan–Lam Coupling2.1.7 Coupling with Amino Acids2.1.8 Coupling with Alkylboron Reagents2.1.9 Coupling with Electron-Deficient Heteroarylamines2.1.10 Selective C–N Bond Formation for the Synthesis of Heterocycle-Containing Compounds2.1.11 Using Sulfonato-imino Copper(II) Complexes2.2 C–O Bond Formation2.2.1 Coupling with (Hetero)arylboron Reagents2.2.2 Coupling with Alkyl- and Alkenylboron Reagents3 C–Element (Element = S, P, C, F, Cl, Br, I, Se, Te, At) Bond Forma tion under Modified Chan–Lam Conditions4 Conclusions
Collapse
Affiliation(s)
- Ajesh Vijayan
- Department of Chemistry, CHRIST (Deemed to be University)
| | | | | | | | | |
Collapse
|
12
|
Direct Introduction of Sulfonamide Groups into Quinoxalin‐2(1
H
)‐ones by Cu‐Catalyzed C3‐H Functionalization. Chem Asian J 2020; 15:3365-3369. [DOI: 10.1002/asia.202000916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 12/14/2022]
|
13
|
First Example of Copper(I) Catalyzed Decarboalkoxymethylation of Alkyl 2-[1-(Pyridin-2-yl)-1 H
-pyrrol-2-yl]acetates. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Wang XX, Xin Y, Li Y, Xia WJ, Zhou B, Ye RR, Li YM. Copper-Catalyzed Decarboxylative Cycloaddition of Propiolic Acids, Azides, and Arylboronic Acids: Construction of Fully Substituted 1,2,3-Triazoles. J Org Chem 2020; 85:3576-3586. [PMID: 31984747 DOI: 10.1021/acs.joc.9b03285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A copper-catalyzed decarboxylative cycloaddition of propiolic acids, azides, and arylboronic acids is described. The present reaction provides an efficient and convenient method for the synthesis of various fully substituted 1,2,3-triazoles from readily available starting materials. A possible mechanism is proposed.
Collapse
Affiliation(s)
- Xiang-Xiang Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yangchun Xin
- Katzin Diagnostic & Research PET/MR Center, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, Delaware 19803, United States
| | - Yi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Wen-Jin Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Bin Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
15
|
Nasseri MA, Rezazadeh Z, Kazemnejadi M, Allahresani A. A Co–Cu bimetallic magnetic nanocatalyst with synergistic and bifunctional performance for the base-free Suzuki, Sonogashira, and C–N cross-coupling reactions in water. Dalton Trans 2020; 49:10645-10660. [DOI: 10.1039/d0dt01846e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel bimetallic catalytic system based on Cu/Co has been developed and used as an efficient, eco-friendly, and recyclable catalyst for base- and Pd-free Sonogashira, Suzuki and C–N cross-coupling reactions in mild reaction conditions.
Collapse
Affiliation(s)
| | - Zinat Rezazadeh
- Department of Chemistry
- Faculty of Sciences
- University of Birjand
- Birjand
- Iran
| | - Milad Kazemnejadi
- Department of Chemistry
- Faculty of Sciences
- University of Birjand
- Birjand
- Iran
| | - Ali Allahresani
- Department of Chemistry
- Faculty of Sciences
- University of Birjand
- Birjand
- Iran
| |
Collapse
|
16
|
Kousik S, Velmathi S. Engineering Metal-Organic Framework Catalysts for C-C and C-X Coupling Reactions: Advances in Reticular Approaches from 2014-2018. Chemistry 2019; 25:16451-16505. [PMID: 31313373 DOI: 10.1002/chem.201901987] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Indexed: 01/24/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous materials that have been actively used for several industrial and synthetic applications. MOFs are spatially and geometrically extrapolated coordination polymers with intriguing properties such as tunable porosity and dimensionality. In terms of their catalytic efficiency, MOFs combine the easy recoverability of heterogeneous catalysts with the increased selectivity of biological catalysts. It is therefore not surprising that a lot of work on optimizing MOF catalysts for organic transformations has been carried out over the past decade. In this review, recent developments in MOF catalysis are summarized, with special attention being paid to C-C, C-N, and C-O coupling reactions. The influence of pore size, pore environment, and load on catalytic activity is described. Post-synthetic stabilization techniques and host-guest interactions in caged MOF scaffolds are detailed. Mechanistic aspects pertaining to the use of MOFs in asymmetric heterogeneous catalysis are highlighted and categorized.
Collapse
Affiliation(s)
- Shravan Kousik
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
| |
Collapse
|
17
|
Mao CL, Zhao S, Zang ZL, Xiao L, Zhou CH, He Y, Cai GX. Pd-Catalyzed Remote Site-Selective and Stereoselective C(Alkenyl)–H Alkenylation of Unactivated Cycloalkenes. J Org Chem 2019; 85:774-787. [DOI: 10.1021/acs.joc.9b02797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chun-Li Mao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Sheng Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhong-Lin Zang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Lin Xiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng-He Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gui-Xin Cai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
18
|
West MJ, Fyfe JWB, Vantourout JC, Watson AJB. Mechanistic Development and Recent Applications of the Chan–Lam Amination. Chem Rev 2019; 119:12491-12523. [DOI: 10.1021/acs.chemrev.9b00491] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthew J. West
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - James W. B. Fyfe
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Julien C. Vantourout
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Allan J. B. Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| |
Collapse
|
19
|
Lei J, Yang Y, Peng L, Wu L, Peng P, Qiu R, Chen Y, Au C, Yin S. Copper‐Catalyzed Oxidative C(sp3)−H/N−H Cross‐Coupling of Hydrocarbons with P(O)−NH Compounds: the Accelerating Effect Induced by Carboxylic Acid Coproduct. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jian Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Materials Science and EngineeringHunan University Changsha 410082 People's Republic of China
| | - Yincai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Materials Science and EngineeringHunan University Changsha 410082 People's Republic of China
| | - Lingteng Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Materials Science and EngineeringHunan University Changsha 410082 People's Republic of China
| | - Lesong Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Materials Science and EngineeringHunan University Changsha 410082 People's Republic of China
| | - Ping Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Materials Science and EngineeringHunan University Changsha 410082 People's Republic of China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Materials Science and EngineeringHunan University Changsha 410082 People's Republic of China
| | - Yi Chen
- School of MedicineHunan University of Chinese Medicine Changsha 410208 People's Republic of China
| | - Chak‐Tong Au
- College of Chemistry and Chemical EngineeringHunan Institute of Engineering Xiangtan 411104, Hunan People's Republic of China
| | - Shuang‐Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Materials Science and EngineeringHunan University Changsha 410082 People's Republic of China
| |
Collapse
|
20
|
Peng Y, Lei J, Qiu R, Peng L, Au CT, Yin SF. Chelation-assisted C-N cross-coupling of phosphinamides and aryl boronic acids with copper powder at room temperature. Org Biomol Chem 2019; 16:4065-4070. [PMID: 29774922 DOI: 10.1039/c8ob00907d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A protocol for the chelation-assisted C-N cross-coupling of phosphinamides and aryl boronic acids with copper powder under an oxygen atmosphere is reported. This reaction proceeds efficiently to afford fully substituted unsymmetrical N-arylation phosphinamides at room temperature in excellent yields. Diverse unstable functional groups on the benzene ring of aryl boronic acids such as vinyl, formyl, acetyl, sulfonyl, acetylamino, cyano, nitro, and trifluoromethyl can be accommodated.
Collapse
Affiliation(s)
- Yao Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | | | | | | | | |
Collapse
|
21
|
Shen J, Xu J, Cai H, Shen C, Zhang P. Platinum(ii)-catalyzed selective para C-H alkoxylation of arylamines through a coordinating activation strategy. Org Biomol Chem 2019; 17:490-497. [PMID: 30566159 DOI: 10.1039/c8ob02942c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A highly efficient method to selectively install alkoxy onto the para position of arylamines via a coordinating activation strategy has been reported. Various substrates are compatible, providing the corresponding products in good to excellent yields. This strategy gives an efficient and practical solution for the synthesis of unsymmetrical aryl ethers. A free radical pathway mechanism is advised for transformation.
Collapse
Affiliation(s)
- Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| | | | | | | | | |
Collapse
|
22
|
Li Q, Wang J, Wen C, Jiang X, Cao K, Wu K, Liang M. Research progress on cross-coupling reactions of alkynylaluminum with electrophiles reagents. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Zu W, Liu S, Jia X, Xu L. Chemoselective N-arylation of aminobenzene sulfonamides via copper catalysed Chan–Evans–Lam reactions. Org Chem Front 2019. [DOI: 10.1039/c8qo01313f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chemoselective N-arylation of unprotected dinucleophilic aminobenzene sulfonamides was achieved via Cu-catalysed Chan–Evans–Lam cross-coupling with aryl boronic acids.
Collapse
Affiliation(s)
- Weisai Zu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi
- China
| | - Shuai Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi
- China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi
- China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi
- China
| |
Collapse
|
24
|
Copper catalyzed tandem Chan–Lam type C—N and Staudinger-phosphite N—P coupling for the synthesis of N-arylphosphoramidates. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
25
|
Grandhi GS, Selvakumar J, Dana S, Baidya M. Directed C–H Bond Functionalization: A Unified Approach to Formal Syntheses of Amorfrutin A, Cajaninstilbene Acid, Hydrangenol, and Macrophyllol. J Org Chem 2018; 83:12327-12333. [DOI: 10.1021/acs.joc.8b02116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gowri Sankar Grandhi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Jayaraman Selvakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
26
|
Xiao Z, Shu S, Lin Y, Zhang Q, Ren P, Li D. Chelation-Assisted C−N Cross-Coupling between Picolinamides and Aryl Boronic Acids under Nickel Catalysis. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhen Xiao
- School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Sihao Shu
- School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Yi Lin
- School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Qian Zhang
- School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| | - Peng Ren
- School of Science; Harbin Institute of Technology (Shenzhen); Shenzhen 518055 China
| | - Dong Li
- School of Materials and Chemical Engineering; Hubei University of Technology; Wuhan 430068 China
| |
Collapse
|
27
|
Synthetic applications and methodology development of Chan-Lam coupling: a review. Mol Divers 2018; 23:215-259. [PMID: 30159807 DOI: 10.1007/s11030-018-9870-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/25/2018] [Indexed: 01/17/2023]
Abstract
Chan-Lam coupling is one of the most popular and easy methods to perform arylation of amines (N-arylations). This cross-coupling is generally performed by reacting aryl boronate derivatives with a variety of substrates involving nitrogen containing functional groups such as amines, amides, ureas, hydrazine, carbamates. This article summarizes the synthetic applications of this reaction and the efforts of scientists to develop novel and efficient methodologies for this reaction.
Collapse
|
28
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1142] [Impact Index Per Article: 163.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
29
|
Affiliation(s)
- Shuai Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan; Shihezi University; Shihezi 832003 China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan; Shihezi University; Shihezi 832003 China
| |
Collapse
|
30
|
Copper (cat) and phenylboronic acid mediated deformylative C-N coupling of isoindolinone-3-ols with formamides provide C(3) aminoisoindolinones. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1474-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
31
|
Jia X, Peng P, Cui J, Xin N, Huang X. Four N,O-Bidentate-Chelated Ligand-Tunable Copper(II) Complexes: Synthesis, Structural Characterization and Exceptional Catalytic Properties for Chan-Lam Coupling Reactions. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xuefeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science; Shanxi Normal University; Linfen, Shanxi Province 041004 China
| | - Pai Peng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science; Shanxi Normal University; Linfen, Shanxi Province 041004 China
| | - Jing Cui
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science; Shanxi Normal University; Linfen, Shanxi Province 041004 China
| | - Nana Xin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; School of Chemistry & Chemical Engineering; Liaocheng University; Liaocheng Shandong Province 252059 China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; School of Chemistry & Chemical Engineering; Liaocheng University; Liaocheng Shandong Province 252059 China
| |
Collapse
|
32
|
Sardarian AR, DindarlooInaloo I, Zangiabadi M. Selective Synthesis of Secondary Arylcarbamates via Efficient and Cost Effective Copper-Catalyzed Mono Arylation of Primary Carbamates with Aryl Halides and Arylboronic Acids. Catal Letters 2018. [DOI: 10.1007/s10562-017-2277-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Selected Copper-Based Reactions for C−N, C−O, C−S, and C−C Bond Formation. Angew Chem Int Ed Engl 2017; 56:16136-16179. [DOI: 10.1002/anie.201701690] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Subhajit Bhunia
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Govind Goroba Pawar
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - S. Vijay Kumar
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Yongwen Jiang
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| |
Collapse
|
34
|
Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Ausgewählte Kupfer-katalysierte Reaktionen für die Bildung von C-N-, C-O-, C-S- und C-C-Bindungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701690] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Subhajit Bhunia
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Govind Goroba Pawar
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - S. Vijay Kumar
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Yongwen Jiang
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| |
Collapse
|
35
|
Shen Y, Cindy Lee WC, Gutierrez DA, Li JJ. Palladium-Catalyzed Direct C(sp2)–H ortho-Arylation of Anilides Using 2-Aminophenylpyrazole as the Directing Group. J Org Chem 2017; 82:11620-11625. [DOI: 10.1021/acs.joc.7b01883] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuning Shen
- Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117, United States
| | - David A. Gutierrez
- Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117, United States
| | - Jie Jack Li
- Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117, United States
| |
Collapse
|
36
|
Liu S, Zu W, Zhang J, Xu L. Chemoselective N-arylation of aminobenzamides via copper catalysed Chan–Evans–Lam reactions. Org Biomol Chem 2017; 15:9288-9292. [DOI: 10.1039/c7ob02491f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chemoselective N-arylation of unprotected aminobenzamides was achieved via Cu-catalysed Chan–Evans–Lam cross-coupling with aryl boronic acids for the first time.
Collapse
Affiliation(s)
- Shuai Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi
- China
| | - Weisai Zu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi
- China
| | - Jinli Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi
- China
- Key Laboratory for Systems Bioengineering MOE
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi
- China
| |
Collapse
|