1
|
Huang C, Jin Y, Fu P, Hu K, Wang M, Zai W, Hua T, Song X, Ye J, Zhang Y, Luo G, Wang H, Liu J, Chen J, Li X, Yuan Z. Discovery of novel small molecules targeting hepatitis B virus core protein from marine natural products with HiBiT-based high-throughput screening. Acta Pharm Sin B 2024; 14:4914-4933. [PMID: 39664428 PMCID: PMC11628845 DOI: 10.1016/j.apsb.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 12/13/2024] Open
Abstract
Due to the limitations of current anti-HBV therapies, the HBV core (HBc or HBcAg) protein assembly modulators (CpAMs) are believed to be potential anti-HBV agents. Therefore, discovering safe and efficient CpAMs is of great value. In this study, we established a HiBiT-based high-throughput screening system targeting HBc and screened novel CpAMs from an in-house marine chemicals library. A novel lead compound 8a, a derivative of the marine natural product naamidine J, has been successfully screened for potential anti-HBV activity. Bioactivity-driven synthesis was then conducted, and the structure‒activity relationship was analyzed, resulting in the discovery of the most effective compound 11a (IC50 = 0.24 μmol/L). Furthermore, 11a was found to significantly inhibit HBV replication in multiple cell models and exhibit a synergistic effect with tenofovir disoproxil fumarate (TDF) and IFNa2 in vitro for anti-HBV activity. Treatment with 11a in a hydrodynamic-injection mouse model demonstrated significant anti-HBV activity without apparent hepatotoxicity. These findings suggest that the naamidine J derivative 11a could be used as the HBV core protein assembly modulator to develop safe and effective anti-HBV therapies.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Jin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Panpan Fu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Mengxue Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Ting Hua
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Xinluo Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Yiqing Zhang
- Guixi Hospital of Chinese Medicine, Guixi 335400, China
| | - Gan Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Haiyu Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Xuwen Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
| |
Collapse
|
2
|
Lin B, Ruan Y, Hou Q, Yuan Z, Liang Y, Zhang J. Regioselective 5- exo-dig (halo)cyclization of N-propargyloxycarbonyl guanidine derivatives under mild conditions. Org Biomol Chem 2024; 22:5585-5590. [PMID: 38896418 DOI: 10.1039/d4ob00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A highly regioselective 5-exo-dig cyclization of aromatic N-propargyloxycarbonyl guanidines was developed via an Ag(I)-catalyzed intramolecular hydroamination reaction. This method features a fast reaction rate and mild reaction conditions. Furthermore, it was extended to access halogenated analogues via a one-pot Ag(I)-catalyzed bromocyclization reaction or an I2-mediated iodocyclization reaction with high E/Z selectivity.
Collapse
Affiliation(s)
- Bohong Lin
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Yaoping Ruan
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Qi Hou
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Zhijun Yuan
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Yunshi Liang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Jing Zhang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| |
Collapse
|
3
|
Fu PP, Wang Q, Zhang Q, Jin Y, Liu J, Chen KX, Guo YW, Liu SH, Li XW. Bioactivity-Driven Synthesis of the Marine Natural Product Naamidine J and Its Derivatives as Potential Tumor Immunological Agents by Inhibiting Programmed Death-Ligand 1. J Med Chem 2023; 66:5427-5438. [PMID: 37040446 DOI: 10.1021/acs.jmedchem.2c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The total synthesis of the marine natural product naamidine J and a rapid structure modification toward its derivatives were achieved on the basis of several rounds of structure-relationship analyses of their tumor immunological activities. These compounds were tested for programmed death-ligand 1 (PD-L1) protein expression in human colorectal adenocarcinoma RKO cells. Among them, compound 11c was found to efficiently suppress constitutive PD-L1 expression in RKO cells with low toxicity and further exerted its antitumor effect in MC38 tumor-bearing C57BL/6 mice by reducing PD-L1 expression and enhancing tumor-infiltrating T-cell immunity. This research work may provide insight for the discovery of new marine natural product-derived tumor immunological drug leads.
Collapse
Affiliation(s)
- Pan-Pan Fu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Qun Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kai-Xian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - San-Hong Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
6
|
Vaden RM, Guillen KP, Salvant JM, Santiago CB, Gibbons JB, Pathi SS, Arunachalam S, Sigman MS, Looper RE, Welm BE. A Cancer-Selective Zinc Ionophore Inspired by the Natural Product Naamidine A. ACS Chem Biol 2019; 14:106-117. [PMID: 30571086 DOI: 10.1021/acschembio.8b00977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present data demonstrating the natural product mimic, zinaamidole A (ZNA), is a modulator of metal ion homeostasis causing cancer-selective cell death by specifically inducing cellular Zn2+-uptake in transformed cells. ZNA's cancer selectivity was evaluated using metastatic, patient-derived breast cancer cells, established human breast cancer cell lines, and three-dimensional organoid models derived from normal and transformed mouse mammary glands. Structural analysis of ZNA demonstrated that the compound interacts with zinc through the N2-acyl-2-aminoimidazole core. Combination treatment with ZnSO4 strongly potentiated ZNA's cancer-specific cell death mechanism, an effect that was not observed with other transition metals. We show that Zn2+-dyshomeostasis induced by ZNA is unique and markedly more selective than other known Zn2+-interacting compounds such as clioquinol. The in vivo bioactivity of ZNA was also assessed and revealed that tumor-bearing mice treated with ZNA had improved survival outcomes. Collectively, these data demonstrate that the N2-acyl-2-aminoimidazole core of ZNA represents a powerful chemotype to induce cell death in cancer cells concurrently with a disruption in zinc homeostasis.
Collapse
Affiliation(s)
- Rachel M. Vaden
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | | | - Justin M. Salvant
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Celine B. Santiago
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Joseph B. Gibbons
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | | | | | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ryan E. Looper
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | | |
Collapse
|