1
|
Sun MY, Cheung SC, Wang XZ, Jin JK, Guo J, Li D, He J. Structural Reassignment of Covalent Organic Framework-Supported Palladium Species: Heterogenized Palladacycles as Efficient Catalysts for Sustainable C-H Activation. ACS CENTRAL SCIENCE 2024; 10:1848-1860. [PMID: 39463833 PMCID: PMC11503496 DOI: 10.1021/acscentsci.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/29/2024]
Abstract
Recent decades have witnessed remarkable progress in ligand-promoted C-H activation with palladium catalysts. While a number of transformations have been achieved with a fairly broad substrate scope, the general requirements for high palladium loadings and enormous challenges in catalyst recycling severely limit the practical applications of C-H activation methodologies in organic synthesis. Herein, we incorporate N,C-ligand-chelated palladacycles into rigid, porous, and crystalline covalent organic frameworks for the C-H arylation of indole and pyrrole derivatives. These heterogeneous palladium catalysts exhibit superior stability and recyclability compared to their homogeneous counterparts. We not only produce several highly reactive palladacycles embedded on new framework supports to facilitate C-H activation/C-C bond-forming reactions but also reassign heterogenized palladium species on frameworks containing a benzaldehyde-derived imine moiety as imine-based palladacycles via comprehensive characterization. Our findings provide guidance for the rational design of framework-supported metallacycles in the development of heterogeneous transition-metal catalysis.
Collapse
Affiliation(s)
- Meng-Ying Sun
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Sheung Chit Cheung
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Xue-Zhi Wang
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Ji-Kang Jin
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Jun Guo
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Dan Li
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Jian He
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
- State
Key Laboratory of Synthetic Chemistry, The
University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| |
Collapse
|
2
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
3
|
Yang L, Ding M, Shi J, Luo N, Wang Y, Lin D, Bao X. Design, synthesis, X-ray crystal structure, and antimicrobial evaluation of novel quinazolinone derivatives containing the 1,2,4-triazole Schiff base moiety and an isopropanol linker. Mol Divers 2024; 28:3215-3224. [PMID: 37935911 DOI: 10.1007/s11030-023-10749-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023]
Abstract
A series of novel quinazolinone derivatives (E1-E31) containing the 1,2,4-triazole Schiff base moiety and an isopropanol linker were designed, synthesized and assessed as antimicrobial agents in agriculture. All the target compounds were fully characterized by 1 H NMR, 13 C NMR, and high-resolution mass spectrometry (HRMS). Among them, the structure of compound E12 was further confirmed via single crystal X-ray diffraction method. The experimental results indicated that many compounds displayed good in vitro antibacterial efficacies against the tested phytopathogenic bacteria including Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Ralstonia solanacearum (Rs). For example, compounds E3, E4, E10, E13, and E22 had EC50 (half-maximal effective concentration) values of 55.4, 39.5, 49.5, 53.5, and 57.4 µg/mL against Xoo, respectively, superior to the commercialized bactericide Bismerthiazol (94.5 µg/mL). In addition, the antibacterial efficacies of compounds E10 and E13 against Xac were about two times more effective than control Bismerthiazol, in terms of their EC50 values. Last, the antifungal assays showed that compounds E22 and E30 had the inhibition rates of 52.7% and 54.6% at 50 µg/mL against Gibberella zeae, respectively, higher than the commercialized fungicide Hymexazol (48.4%).
Collapse
Affiliation(s)
- Lan Yang
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Muhan Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Jun Shi
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou Medical University, Guiyang, 550014, China
| | - Na Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Yuli Wang
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Dongyun Lin
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Xiaoping Bao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Mondal S, Jana R. Green light-mediated dual eosin Y/Pd II-catalyzed C(sp 2)-H arylation of N-H unprotected 2-arylquinazolinones. Org Biomol Chem 2024; 22:5540-5545. [PMID: 38916115 DOI: 10.1039/d4ob00779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
We report herein an eosin Y/Pd(II) dual catalytic approach for regio- and chemoselective C(sp2)-H monoarylation of N-H unprotected 2-phenyl quinazolinone derivatives under green light irradiation with no necessity for any base/additive/external oxidant. The free N-H moiety was post-modified for quinazolinone scaffold diversification and C-H annulation.
Collapse
Affiliation(s)
- Shuvam Mondal
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
5
|
Li X, Luo H, Song R, Zhang Y, Gong X, Cai H, Luo X. Selective Cross-Dehydrogenative Coupling of Various Acyclic Enamides with Heteroarenes via Rh(III)-Catalyzed C-H Activation. Org Lett 2023; 25:5262-5267. [PMID: 37417807 DOI: 10.1021/acs.orglett.3c01786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The developed methodology describes an efficient Rh(III)-catalyzed oxidative C-H/C-H cross-coupling between acyclic enamides and heteroarenes. This cross dehydrogenative coupling (CDC) reaction offers advantages, including excellent regioselectivity and stereoselectivity, good functional group compatibility, and a broad substrate scope. Mechanistically, Rh(III)-catalyzed β-C(sp2)-H activation of acyclic enamides is proposed to be the critical step.
Collapse
Affiliation(s)
- Xiaolan Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Ruixin Song
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yuting Zhang
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xian Gong
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xuzhong Luo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
6
|
Mendogralo EY, Nesterova LY, Nasibullina ER, Shcherbakov RO, Tkachenko AG, Sidorov RY, Sukonnikov MA, Skvortsov DA, Uchuskin MG. The Synthesis and Biological Evaluation of 2-(1 H-Indol-3-yl)quinazolin-4(3 H)-One Derivatives. Molecules 2023; 28:5348. [PMID: 37513221 PMCID: PMC10384628 DOI: 10.3390/molecules28145348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The treatment of many bacterial diseases remains a significant problem due to the increasing antibiotic resistance of their infectious agents. Among others, this is related to Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA) and Mycobacterium tuberculosis. In the present article, we report on antibacterial compounds with activity against both S. aureus and MRSA. A straightforward approach to 2-(1H-indol-3-yl)quinazolin-4(3H)-one and their analogues was developed. Their structural and functional relationships were also considered. The antimicrobial activity of the synthesized compounds against Mycobacterium tuberculosis H37Rv, S. aureus ATCC 25923, MRSA ATCC 43300, Candida albicans ATCC 10231, and their role in the inhibition of the biofilm formation of S. aureus were reported. 2-(5-Iodo-1H-indol-3-yl)quinazolin-4(3H)-one (3k) showed a low minimum inhibitory concentration (MIC) of 0.98 μg/mL against MRSA. The synthesized compounds were assessed via molecular docking for their ability to bind long RSH (RelA/SpoT homolog) proteins using mycobacterial and streptococcal (p)ppGpp synthetase structures as models. The cytotoxic activity of some synthesized compounds was studied. Compounds 3c, f, g, k, r, and 3z displayed significant antiproliferative activities against all the cancer cell lines tested. Indolylquinazolinones 3b, 3e, and 3g showed a preferential suppression of the growth of rapidly dividing A549 cells compared to slower growing fibroblasts of non-tumor etiology.
Collapse
Affiliation(s)
- Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Larisa Y Nesterova
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | | | - Roman O Shcherbakov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Alexander G Tkachenko
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Roman Y Sidorov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Maxim A Sukonnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Dmitry A Skvortsov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| |
Collapse
|
7
|
Singla D, Paul K. Ru(II)-Catalyzed Regioselective C(5)-H Functionalization of Quinazolinone-Coumarin Conjugates: Synthesis and Photophysical Studies. J Org Chem 2022; 87:10673-10683. [PMID: 35930499 DOI: 10.1021/acs.joc.2c00872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quinazolinone template offers an exciting potential for transforming molecules into useful bioactivity. Herein, we report the first regioselective C-5 alkenylation of quinazolinone-coumarin conjugates via ruthenium(II) catalyst using amide as a weak directing group. This methodology permits excellent regioselectivity, extensive substrate tolerance, and mild reaction conditions. In addition, it generates interesting fluorophores that show positive solvatochromism in the range from 404 nm (toluene) to 541 nm (methanol).
Collapse
Affiliation(s)
- Dinesh Singla
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| |
Collapse
|
8
|
Liu X, Wang L, Han J. ortho-Nitro-substituted diaryliodonium salts enabled regioselective cyclization of arylcarboxylic acids toward 3,4-naphthocoumarins. Org Biomol Chem 2022; 20:8628-8632. [DOI: 10.1039/d2ob01783k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We herein report an efficient regioselective cascade of arylation and cyclization of arylcarboxylic acids via Pd(ii)-activation of both C–I and vicinal C–NO2 bonds of ortho-nitro-substituted diaryliodonium salts.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
9
|
Yang H, Huang N, Wang N, Shen H, Teng F, Liu X, Jiang H, Tan MC, Gui QW. Ultrasound-Assisted Iodination of Imidazo[1,2-α]pyridines Via C-H Functionalization Mediated by tert-Butyl Hydroperoxide. ACS OMEGA 2021; 6:25940-25949. [PMID: 34660956 PMCID: PMC8515396 DOI: 10.1021/acsomega.1c02645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/05/2021] [Indexed: 05/15/2023]
Abstract
A novel metal catalyst-free and environmentally friendly method for the regioselective iodination of imidazo[1,2-α]pyridines at their C3 position is disclosed, which has a wide substrate scope and could be sustainable. This reaction proceeds through ultrasound acceleration in the presence of a green alcohol solvent. Compared with a conventional heating system, the reaction efficiency and the rate are significantly improved and the iodine atom economy is maximized using ultrasound techniques.
Collapse
Affiliation(s)
- Hua Yang
- College
of Bioscience and Biotechnology, Hunan Agricultural
University, Changsha 410128, People’s Republic
of China
| | - Ning Huang
- School
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| | - Nengqing Wang
- School
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| | - Haicheng Shen
- School
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| | - Fan Teng
- School
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| | - Xiaoying Liu
- School
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| | - Hongmei Jiang
- School
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| | - Mei-Chen Tan
- School
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| | - Qing-Wen Gui
- School
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| |
Collapse
|
10
|
Nomula V, Rao SN. KO tBu-BF 3.OEt 2 mediated synthesis of quinazolin-4( 3H)-ones from 2-substituted amides with nitriles and aldehydes. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1928218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vishnuvardhan Nomula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of scientific and innovative research(AcSIR), Ghaziabad, India
| | - Sadu Nageswara Rao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
11
|
Umadevi N, Kumar G, Reddy NG, Reddy BS. Recent Advances in C–H Activation and Functionalization of Quinazolinones/ Quinazolines. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201210180732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review summarizes the transition metal-catalyzed direct C–H functionalization
of quinazolinones and quinazolines through C-C, C-N and C-O bond formations. It focuses
mainly on the C-H (sp<sup>2</sup> or sp<sup>3</sup>) bond arylation, amination, sulfamidation, acetoxylation,
halogenation, annulation of quinazolinones and quinazolines. This review illustrates the scope
of C-H activation and functionalization of various quinazolinone and quinazoline derivatives.
Collapse
Affiliation(s)
- N. Umadevi
- Indian Institute of Chemical Technology, Hyderabad, India
| | - G. Kumar
- Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - N.C. Gangi Reddy
- Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | | |
Collapse
|
12
|
Mandal A, Bera R, Baidya M. Regioselective C-H Alkenylation and Unsymmetrical Bis-olefination of Heteroarene Carboxylic Acids with Ruthenium Catalysis in Water. J Org Chem 2021; 86:62-73. [PMID: 33251801 DOI: 10.1021/acs.joc.0c02215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient weak carboxylate-assisted oxidative cross-dehydrogenative C-H/C-H coupling (CDC) of heteroarenes with readily available olefins has been devised employing water as green solvent under ruthenium(II) catalysis. The reaction is operationally simple, accommodates a large variety of heteroaromatic carboxylic acids as well as olefins, and facilitates a diverse array of high-value olefin-tethered heteroarenes in high yields (up to 87%). The potential of this ortho-C-H bond activation strategy has also been exploited toward tunable synthesis of densely functionalized heteroarenes through challenging unsymmetrical bis-olefination process in a one-pot sequential fashion. Mechanistic investigation demonstrates a reversible ruthenation process and C-H metalation step might not be involved in the rate-determining step.
Collapse
Affiliation(s)
- Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Ratnadeep Bera
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
13
|
Diaryliodoniums Salts as Coupling Partners for Transition-Metal Catalyzed C- and N-Arylation of Heteroarenes. Catalysts 2020. [DOI: 10.3390/catal10050483] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Owing to the pioneering works performed on the metal-catalyzed sp2 C–H arylation of indole and pyrrole by Sanford and Gaunt, N– and C-arylation involving diaryliodonium salts offers an attractive complementary strategy for the late-stage diversification of heteroarenes. The main feature of this expanding methodology is the selective incorporation of structural diversity into complex molecules which usually have several C–H bonds and/or N–H bonds with high tolerance to functional groups and under mild conditions. This review summarizes the main recent achievements reported in transition-metal-catalyzed N– and/or C–H arylation of heteroarenes using acyclic diaryliodonium salts as coupling partners.
Collapse
|
14
|
Yuan S, Chang J, Yu B. Construction of Biologically Important Biaryl Scaffolds through Direct C–H Bond Activation: Advances and Prospects. Top Curr Chem (Cham) 2020; 378:23. [DOI: 10.1007/s41061-020-0285-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
|
15
|
Kumaran S, Parthasarathy K. Cobalt(III)-Catalyzed Synthesis of Fused Quinazolinones by C-H/N-H Annulation of 2-Arylquinazolinones with Alkynes. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Subramani Kumaran
- Department of Organic Chemistry; University of Madras; Guindy Campus -600025 Chennai Tamilnadu India
| | - Kanniyappan Parthasarathy
- Department of Organic Chemistry; University of Madras; Guindy Campus -600025 Chennai Tamilnadu India
| |
Collapse
|
16
|
|
17
|
Kshirsagar UA, Waghmare DS, Tambe SD. The regioselective coupling of 2-arylquinazolinone C–H with aldehydes and benzyl alcohols under oxidative conditions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03721d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Palladium catalyzed direct and regioselective cross dehydrogenative coupling (CDC) of 2-arylquinazoline-4-one endowed with a quinazolinone nucleus as an inherent directing group with aldehyde and oxidative coupling with benzyl alcohol was developed.
Collapse
Affiliation(s)
- Umesh A. Kshirsagar
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
- Department of Chemistry
| | | | | |
Collapse
|
18
|
Viveki AB, Garad DN, Gonnade RG, Mhaske SB. para-Selective copper-catalyzed C(sp2)–H amidation/dimerization of anilides via a radical pathway. Chem Commun (Camb) 2020; 56:1565-1568. [DOI: 10.1039/c9cc09824k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A unique process for para-selective C–H functionalization leading to amidation/dimerization of anilide derivatives via a radical pathway has been demonstrated.
Collapse
Affiliation(s)
- Amol B. Viveki
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Physical and Materials Chemistry Division
| | - Dnyaneshwar N. Garad
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Physical and Materials Chemistry Division
| | - Rajesh G. Gonnade
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Santosh B. Mhaske
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Physical and Materials Chemistry Division
| |
Collapse
|
19
|
Ghosh P, Ganguly B, Das S. C–H functionalization of quinazolinones by transition metal catalysis. Org Biomol Chem 2020; 18:4497-4518. [DOI: 10.1039/d0ob00742k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quinazolinone and its derivatives are an important class of heterocyclic scaffolds in pharmaceuticals and natural products. This review provides the recent research advances in the transition metal catalyzed selective C–H bond functionalization of quinazolinone.
Collapse
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| | - Bhaskar Ganguly
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| | - Sajal Das
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| |
Collapse
|
20
|
Zhou C, Zhao J, Guo W, Jiang J, Wang J. N-Methoxyamide: An Alternative Amidation Reagent in the Rhodium(III)-Catalyzed C–H Activation. Org Lett 2019; 21:9315-9319. [DOI: 10.1021/acs.orglett.9b03357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chao Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Junqi Zhao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Weicong Guo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
21
|
Vu HM, Chen F, Li X. Acetoxylation and Halogenation of 2‐Arylbenzoxazinones via Palladium‐Catalyzed C(sp
2
)‐H Bond Oxidation. ChemistrySelect 2019. [DOI: 10.1002/slct.201902611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Huu Manh Vu
- School of Chemical and Biological EngineeringUniversity of Science and Technology Beijing 30 Xueyuan Road, Haidian District Beijing 100083 PR China
| | - Fei‐Wu Chen
- School of Chemical and Biological EngineeringUniversity of Science and Technology Beijing 30 Xueyuan Road, Haidian District Beijing 100083 PR China
| | - Xu‐Qin Li
- School of Chemical and Biological EngineeringUniversity of Science and Technology Beijing 30 Xueyuan Road, Haidian District Beijing 100083 PR China
| |
Collapse
|
22
|
Yan Z, Ouyang B, Mao X, Gao W, Deng Z, Peng Y. One-pot regioselective C-H activation iodination-cyanation of 2,4-diarylquinazolines using malononitrile as a cyano source. RSC Adv 2019; 9:18256-18264. [PMID: 35515228 PMCID: PMC9064619 DOI: 10.1039/c9ra02979f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/28/2019] [Indexed: 11/21/2022] Open
Abstract
A one-pot cyanation of 2,4-arylquinazoline with NIS and malononitrile has been developed. The one-pot reaction includes two steps. The Rh-catalyzed selective C-H activation/iodization of 2,4-diarylquinazoline with NIS, and then Cu-catalyzed cyanation of the corresponding iodinated intermediate with malononitrile to selectively give 2-(2-cyanoaryl)-4-arylquinazolines or 2-(2,6-dicyanoaryl)-4-arylquinazolines in good to excellent yields.
Collapse
Affiliation(s)
- Ziqiao Yan
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Province's Key Laboratory of Green Chemistry, Jiangxi Normal University Nanchang Jiangxi 330022 China
| | - Banlai Ouyang
- Department of Chemistry, Nanchang Normal University Nanchang 330032 China
| | - Xunchun Mao
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Province's Key Laboratory of Green Chemistry, Jiangxi Normal University Nanchang Jiangxi 330022 China
| | - Wei Gao
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Province's Key Laboratory of Green Chemistry, Jiangxi Normal University Nanchang Jiangxi 330022 China
| | - Zhihong Deng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Province's Key Laboratory of Green Chemistry, Jiangxi Normal University Nanchang Jiangxi 330022 China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Province's Key Laboratory of Green Chemistry, Jiangxi Normal University Nanchang Jiangxi 330022 China
| |
Collapse
|
23
|
Sarkar W, Mishra A, Bhowmik A, Deb I. Copper‐Mediated Direct and Selective C−H Thiolation of Quinazolinones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Writhabrata Sarkar
- Organic& Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Aniket Mishra
- Organic& Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Arup Bhowmik
- Organic& Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Indubhusan Deb
- Organic& Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
24
|
Xue C, Han J, Zhao M, Wang L. Rapid Construction of Fused Heteropolycyclic Aromatics via Palladium-Catalyzed Domino Arylations of Imidazopyridine Derivatives. Org Lett 2019; 21:4402-4406. [DOI: 10.1021/acs.orglett.9b00761] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenwei Xue
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai−Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
25
|
Rohokale RS, Kalshetti RG, Ramana CV. Iridium(III)-Catalyzed Alkynylation of 2-(Hetero)arylquinazolin-4-one Scaffolds via C–H Bond Activation. J Org Chem 2019; 84:2951-2961. [DOI: 10.1021/acs.joc.8b02738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rajendra S. Rohokale
- CSIR−National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
| | - Rupali G. Kalshetti
- CSIR−National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Chepuri V. Ramana
- CSIR−National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, New Delhi 110025, India
| |
Collapse
|
26
|
A highly efficient heterogeneous palladium-catalyzed carbonylative annulation of 2-aminobenzamides with aryl iodides leading to quinazolinones. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Qian C, Liu K, Tao SW, Zhang FL, Zhu YM, Yang SL. Palladium-Catalyzed Oxidative Three-Component Coupling of Anthranilamides with Isocyanides and Arylboronic Acids: Access to 2,3-Disubstituted Quinazolinones. J Org Chem 2018; 83:9201-9209. [DOI: 10.1021/acs.joc.8b01218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chun Qian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550000, China
| | - Kui Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shou-Wei Tao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Fang-Ling Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yong-Ming Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shi-Lin Yang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550000, China
| |
Collapse
|
28
|
Viveki AB, Mhaske SB. Ruthenium-Catalyzed Regioselective Alkenylation/Tandem Hydroamidative Cyclization of Unmasked Quinazolinones Using Terminal Alkynes. J Org Chem 2018; 83:8906-8913. [DOI: 10.1021/acs.joc.8b01143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Wei LS, He GX, Kong XF, Pan CX, Mo DL, Su GF. Gold(III)-Catalyzed Selective Cyclization of Alkynyl Quinazolinone-Tethered Pyrroles: Synthesis of Fused Quinazolinone Scaffolds. J Org Chem 2018; 83:6719-6727. [DOI: 10.1021/acs.joc.8b00168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lin-Su Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Guo-Xue He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Xiang-Fei Kong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jian Gan Road, Guilin 541004, China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
30
|
Rhodium(III)-catalyzed C H amination of 2-arylquinazolin-4(3H)-one with N-alkyl-O-benzoyl-hydroxylamines. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Annamalai P, Hsu KC, Raju S, Hsiao HC, Chou CW, Lin GY, Hsieh CM, Chen PL, Liu YH, Chuang SC. Palladium(II)-Catalyzed Mono- and Bis-alkenylation of N-Acetyl-2-aminobiaryls through Regioselective C-H Bond Activation. J Org Chem 2018. [PMID: 29521504 DOI: 10.1021/acs.joc.8b00194] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We developed palladium-catalyzed oxidative coupling of olefins with N-acyl 2-aminobiaryls through a sequence of ortho C-H bond activation/alkene insertion/reductive elimination. Furthermore, we controlled the selectivity of mono- and bis-alkenylation products with the solvent effect. The developed protocol was promising for a broad substrate scope ranging from activated olefins with a wide variety of functional groups to unactivated olefins.
Collapse
Affiliation(s)
| | - Kou-Chi Hsu
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| | - Selvam Raju
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| | - Huan-Chang Hsiao
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| | - Chih-Wei Chou
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| | - Gu-Ying Lin
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| | - Cheng-Ming Hsieh
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| | - Pei-Ling Chen
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan 30013
| | - Yi-Hung Liu
- Instrumentation Center , National Taiwan University , Taipei , Taiwan 30010
| | - Shih-Ching Chuang
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30013 , Taiwan
| |
Collapse
|
32
|
Lee JB, Kang ME, Kim J, Lee CY, Kee JM, Myung K, Park JU, Hong SY. Direct diversification of unmasked quinazolin-4(3H)-ones through orthogonal reactivity modulation. Chem Commun (Camb) 2018; 53:10394-10397. [PMID: 28876024 DOI: 10.1039/c7cc05794f] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we report a set of direct functionalization methods of unmasked 2-phenylquinazolin-4(3H)-ones, a privileged alkaloid core, without the installation/removal event of protecting groups or exogenous coordinating moieties. Divergent pathways were modulated with transition-metal catalysts by suppressing competitive reactivities, leading to N-arylation, annulative π-extension, or C-H fluorination.
Collapse
Affiliation(s)
- Jae Bin Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Mi Eun Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Joohee Kim
- School of Materials Science and Engineering, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Chang Young Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Jung-Min Kee
- Department of Chemistry, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), School of Life Science, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jang-Ung Park
- School of Materials Science and Engineering, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Sung You Hong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea. and Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), School of Life Science, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
33
|
Garad DN, Mhaske SB. Diversification of Quinazolinones by Pd-Catalyzed C(sp3)-Acetoxylation. J Org Chem 2017; 82:10470-10478. [DOI: 10.1021/acs.joc.7b01934] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dnyaneshwar N. Garad
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Santosh B. Mhaske
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
34
|
Zheng L, Hua R. C-H Activation and Alkyne Annulation via Automatic or Intrinsic Directing Groups: Towards High Step Economy. CHEM REC 2017; 18:556-569. [PMID: 28681990 DOI: 10.1002/tcr.201700024] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022]
Abstract
Direct transformation of carbon-hydrogen bond (C-H) has emerged to be a trend for construction of molecules from building blocks with no or less prefunctionalization, leading high atom and step economy. Directing group (DG) strategy is widely used to achieve higher reactivity and selectivity, but additional steps are usually needed for installation and/or cleavage of DGs, limiting step economy of the overall transformation. To meet this challenge, we proposed a concept of automatic DG (DGauto ), which is auto-installed and/or auto-cleavable. Multifunctional oxime and hydrazone DGauto were designed for C-H activation and alkyne annulation to furnish diverse nitrogen-containing heterocycles. Imidazole was employed as an intrinsic DG (DGin ) to synthesize ring-fused and π-extended functional molecules. The alkyne group in the substrates can also be served as DGin for ortho-C-H activation to afford carbocycles. In this account, we intend to give a review of our progress in this area and brief introduction of other related advances on C-H functionalization using DGauto or DGin strategies.
Collapse
Affiliation(s)
- Liyao Zheng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China
| | - Ruimao Hua
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|