1
|
Peixoto de Abreu Lima A, Pandolfi E, Schapiro V, Suescun L. Synthesis, crystal structure and absolute configuration of (3a S,4 R,5 S,7a R)-7-(but-3-en-1-yn-1-yl)-2,2-dimethyl-3a,4,5,7a-tetra-hydro-2 H-1,3-benzodioxole-4,5-diol. Acta Crystallogr E Crystallogr Commun 2024; 80:1165-1169. [PMID: 39712156 PMCID: PMC11660465 DOI: 10.1107/s2056989024009733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/04/2024] [Indexed: 12/24/2024]
Abstract
The absolute configuration of the title compound, C13H16O4, determined as 1S,2R,3S,4R based on the synthetic pathway, was confirmed by single-crystal X-ray diffraction. The mol-ecule is a relevant inter-mediary for the synthesis of speciosins, ep-oxy-quinoides or their analogues. The mol-ecule contains fused five- and six-membered rings with two free hydroxyl groups and two protected as an iso-propyl-idenedioxo ring. The packing is directed by hydrogen bonds that define double planes of mol-ecules laying along the ab plane and van der Waals inter-actions between aliphatic chains that point outwards of the planes.
Collapse
Affiliation(s)
- Alejandro Peixoto de Abreu Lima
- Laboratorio de Síntesis Orgánica Departamento de Química Orgánica Facultad de Química Universida de la República Avenida General Flores 2124 CP 11800 MontevideoUruguay
| | - Enrique Pandolfi
- Laboratorio de Síntesis Orgánica Departamento de Química Orgánica Facultad de Química Universida de la República Avenida General Flores 2124 CP 11800 MontevideoUruguay
| | - Valeria Schapiro
- Laboratorio de Síntesis Orgánica Departamento de Química Orgánica Facultad de Química Universida de la República Avenida General Flores 2124 CP 11800 MontevideoUruguay
| | - Leopoldo Suescun
- Cryssmat-Lab, Cátedra de Física, DETEMA, Facultad de Química, Universidad de la República, Av. General Flores 2124, CP 11800, Montevideo, Uruguay
| |
Collapse
|
2
|
Leśniewska A, Przybylski P. Seven-membered N-heterocycles as approved drugs and promising leads in medicinal chemistry as well as the metal-free domino access to their scaffolds. Eur J Med Chem 2024; 275:116556. [PMID: 38879971 DOI: 10.1016/j.ejmech.2024.116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Azepanes or azepines are structural motifs of many drugs, drug candidates and evaluated lead compounds. Even though compounds having N-heterocyclic 7-membered rings are often found in nature (e.g. alkaloids), the natural compounds of this group are rather rare as approved therapeutics. Thus, recently studied and approved azepane or azepine-congeners predominantly consist of semi-synthetically or synthetically-obtained scaffolds. In this review a comparison of approved drugs and recently investigated leads was proposed taking into regard their structural aspects (stereochemistry), biological activities, pharmacokinetic properties and confirmed molecular targets. The 7-membered N-heterocycles reveal a wide range of biological activities, not only against CNS diseases, but also as e.g. antibacterial, anticancer, antiviral, antiparasitic and against allergy agents. As most of the approved or investigated potential drugs or lead structures, belonging to 7-membered N-heterocycles, are synthetic scaffolds, this report also reveals different and efficient metal-free cascade approaches useful to synthesize both simple azepane or azepine-containing congeners and those of oligocyclic structures. Stereochemistry of azepane/azepine fused systems, in view of biological data and binding with the targets, is discussed. Apart from the approved drugs, we compare advances in SAR studies of 7-membered N-heterocycles (mainly from 2018 to 2023), whereas the related synthetic part concerning various domino strategies is focused on the last ten years.
Collapse
Affiliation(s)
- Aleksandra Leśniewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland.
| |
Collapse
|
3
|
Bray JM, Stephens SM, Weierbach SM, Vargas K, Lambert KM. Recent advancements in the use of Bobbitt's salt and 4-acetamidoTEMPO. Chem Commun (Camb) 2023; 59:14063-14092. [PMID: 37946555 DOI: 10.1039/d3cc04709a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Recent advances in synthetic methodologies for selective, oxidative transformations using Bobbitt's salt (4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium tetrafluoroborate, 1) and its stable organic nitroxide counterpart ACT (4-acetamidoTEMPO, 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl, 2) have led to increased applications across a broad array of disciplines. Current applications and mechanistic understanding of these metal-free, environmentally benign, and easily accessible organic oxidants now span well-beyond the seminal use of 1 and 2 in selective alcohol oxidations. New synthetic methodologies for the oxidation of alcohols, ethers, amines, thiols, C-H bonds and other functional groups with 1 and 2 along with the field's current mechanistic understandings of these processes are presented alongside our contributions in this area. Exciting new areas harnessing the unique properties of these oxidants include: applications to drug discovery and natural product total synthesis, the development of new electrocatalytic methods for depolymerization of lignin and modification of other biopolymers, in vitro and in vivo nucleoside modifications, applications in supramolecular catalysis, the synthesis of new polymers and materials, enhancements in the design of organic redox flow batteries, uses in organic fuel cells, applications and advancements in energy storage, the development of electrochemical sensors, and the production of renewable fuels.
Collapse
Affiliation(s)
- Jean M Bray
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Shannon M Stephens
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Shayne M Weierbach
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Karen Vargas
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Kyle M Lambert
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| |
Collapse
|
4
|
Li HX, Sun MR, Zhang Y, Song LL, Zhang F, Song YQ, Hou XD, Ge GB. Human Carboxylesterase 1A Plays a Predominant Role in Hydrolysis of the Anti-Dyslipidemia Agent Fenofibrate in Humans. Drug Metab Dispos 2023; 51:1490-1498. [PMID: 37550069 DOI: 10.1124/dmd.123.001365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Fenofibrate, a marketed peroxisome proliferator-activated receptor-α (PPARα) agonist, has been widely used for treating severe hypertriglyceridemia and mixed dyslipidemia. As a canonical prodrug, fenofibrate can be rapidly hydrolyzed to release the active metabolite (fenofibric acid) in vivo, but the crucial enzyme(s) responsible for fenofibrate hydrolysis and the related hydrolytic kinetics have not been well-investigated. This study aimed to assign the key organs and crucial enzymes involved in fenofibrate hydrolysis in humans, as well as reveal the impact of fenofibrate hydrolysis on its non-PPAR-mediated biologic activities. Our results demonstrated that fenofibrate could be rapidly hydrolyzed in the preparations from both human liver and lung to release fenofibric acid. Reaction phenotyping assays coupling with chemical inhibition assays showed that human carboxylesterase 1A (hCES1A) played a predominant role in fenofibrate hydrolysis in human liver and lung, while human carboxylesterase 2A (hCES2A) and human monoacylglycerol esterase (hMAGL) contributed to a very lesser extent. Kinetic analyses showed that fenofibrate could be rapidly hydrolyzed by hCES1A in human liver preparations, while the inherent clearance of hCES1A-catalyzed fenofibrate hydrolysis is much higher (>200-fold) than than that of hCES2A or hMAGL. Biologic assays demonstrated that both fenofibrate and fenofibric acid showed very closed Nrf2 agonist effects, but fenofibrate hydrolysis strongly weakens its inhibitory effects against both hCES2A and hNtoum. Collectively, our findings reveal that the liver is the major organ and hCES1A is the predominant enzyme-catalyzing fenofibrate hydrolysis in humans, while fenofibrate hydrolysis significantly reduces inhibitory effects of fenofibrate against serine hydrolases. SIGNIFICANCE STATEMENT: Fenofibrate can be completely converted to fenofibric acid in humans and subsequently exert its pharmacological effects, but the hydrolytic pathways of fenofibrate in humans have not been well-investigated. This study reported that the liver was the predominant organ and human carboxylesterase 1A was the crucial enzyme involved in fenofibrate hydrolysis in humans.
Collapse
Affiliation(s)
- Hong-Xin Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Meng-Ru Sun
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Ya Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Li-Lin Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Feng Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Yun-Qing Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Xu-Dong Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.-X.L., M.-R.S., Y.Z., L.-L.S., F.Z., Y.-Q.S., X.-D.H., G.-B.G.) and Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China (L.-L.S.)
| |
Collapse
|
5
|
Sheng B, Zeng C, Chen J, Ye WC, Tang W, Lan P, Banwell M. Total Syntheses of the Imidazo[1,2‐f]phenanthridine‐containing Alkaloid Zephycandidine A. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Wen-Cai Ye
- Jinan University College of Pharmacy CHINA
| | - Wei Tang
- Jinan University College of Pharmacy CHINA
| | | | - Martin Banwell
- Australian National University Research School of Chemistry Building 137Sullivans Creek Road 2601 Canberra AUSTRALIA
| |
Collapse
|
6
|
Miller IR, McLean NJ, Moustafa GAI, Ajavakom V, Kemp SC, Bellingham RK, Camp NP, Brown RCD. Transition-Metal-Mediated Chemo- and Stereoselective Total Synthesis of (-)-Galanthamine. J Org Chem 2022; 87:1325-1334. [PMID: 35007075 DOI: 10.1021/acs.joc.1c02638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An asymmetric synthetic route to (-)-galanthamine (1), a pharmacologically active Amaryllidaceae alkaloid used for the symptomatic treatment of early onset Alzheimer's disease, was successfully established with very high levels of stereocontrol. The key to achieving high chemo- and stereo-selectivity in this approach was the use of transition-metal-mediated reactions, namely, enyne ring-closing metathesis, Heck coupling, and titanium-based asymmetric allylation.
Collapse
Affiliation(s)
- Iain R Miller
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Neville J McLean
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Gamal A I Moustafa
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Vachiraporn Ajavakom
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Stephen C Kemp
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Richard K Bellingham
- Chemical Development, Glaxo SmithKline Pharmaceuticals, The Old Powder Mills, Leigh, Tonbridge, Kent TN11 9AN, U.K
| | - Nicholas P Camp
- Eli Lilly Research Centre, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey GU20 6PH, U.K
| | - Richard C D Brown
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|
7
|
Cigan E, Eggbauer B, Schrittwieser JH, Kroutil W. The role of biocatalysis in the asymmetric synthesis of alkaloids - an update. RSC Adv 2021; 11:28223-28270. [PMID: 35480754 PMCID: PMC9038100 DOI: 10.1039/d1ra04181a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes towards these important natural products. The present review summarises modern developments in chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to take an increasingly 'central' role.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Eggbauer
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H Schrittwieser
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
8
|
Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology 2020; 190:108352. [PMID: 33035532 DOI: 10.1016/j.neuropharm.2020.108352] [Citation(s) in RCA: 519] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD), the most common cause of adult-onset dementia is characterized by a progressive decline of cognitive functions accompanied by behavioral manifestations. The main class of drugs currently used for the treatment of AD are acetylcholinesterase/cholinesterase inhibitors (ChE-Is). The first ChE-I licensed for symptomatic treatment of AD was tacrine. The ChE-Is currently available in the market are donepezil, rivastigmine and galantamine as tacrine is no longer in use, due to its hepatotoxicity. According to mechanism of action the ChE-Is are classified as short-acting or reversible agents such as tacrine, donepezil, and galantamine, as intermediate-acting or pseudo-irreversible agent such as rivastigmine. Overall, the efficacy of the three ChE-Is available in the market is similar and the benefit of administration of these compounds is mild and may not be clinically significant. Due to gastrointestinal side effects of these drugs, medicinal chemistry and pharmaceutical delivery studies have investigated solutions to improve the pharmacological activity of these compounds. In spite of the limited activity of ChE-Is, waiting for more effective approaches, these drugs still represent a pharmacotherapeutic resource for the treatment of AD. Other approaches in which ChE-Is were investigated is in their use in combination with other classes of drugs such as cholinergic precursors, N-methyl-d-aspartate (NMDA) receptor antagonists and antioxidant agents. After many years from the introduction in therapy of ChE-Is, the combination with other classes of drugs may represent the chance for a renewed interest of ChE-Is in the treatment of adult-onset dementia disorders.
Collapse
Affiliation(s)
- Gabriella Marucci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Michela Buccioni
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Diego Dal Ben
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Catia Lambertucci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Rosaria Volpini
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, Telemedicine and Telepharmacy Center University of Camerino via Madonna delle Carceri 9, 62032, Camerino, Italy.
| |
Collapse
|
9
|
Liu H, Yan Y, Zhang J, Liu M, Cheng S, Wang Z, Zhang X. Enantioselective dearomative [3+2] annulation of 5-amino-isoxazoles with quinone monoimines. Chem Commun (Camb) 2020; 56:13591-13594. [DOI: 10.1039/d0cc05807f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enantioselective dearomative [3+2] annulation of 5-amino-isoxazoles with quinone monoimines provided various (bridged) isoxazolines fused dihydrobenzofurans with moderate to good yields in moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Hui Liu
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Yingkun Yan
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Jiayan Zhang
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Min Liu
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Shaobing Cheng
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Zhouyu Wang
- Department of Chemistry
- Xihua University
- China
| | - Xiaomei Zhang
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| |
Collapse
|
10
|
Manipulating the enone moiety of levoglucosenone: 1,3-Transposition reactions including ones leading to isolevoglucosenone. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
van Otterlo WAL, Green IR. A Review on Recent Syntheses of Amaryllidaceae Alkaloids and Isocarbostyrils (Time period mid-2016 to 2017). Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alkaloids from the Amaryllidaceae have become valuable targets for synthetic organic chemists, mainly due to their wide variety of bioactivities and potential for utilization in medicinal chemistry ventures. In addition, the structural complexity of a number of these alkaloids has also been a reason for the interest in these compounds. In this review, the last 18 months of literature was perused and synthetic highlights have been presented here, with the hope to further focus attention on this interesting class of compounds and to encourage others to synthesize these compounds and their derivatives and/or analogues. The review contains examples of syntheses from most of the important alkaloid scaffold classes previously isolated from the Amaryllidaceae, namely: lycorine, crinine, galanthamine, tazettine, montanine, phenanthridone, phenanthridine, plicamine, mesembrine and some minor scaffolds (like gracilamine).
Collapse
Affiliation(s)
- Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Ivan R. Green
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
12
|
|
13
|
Ma X, Yan Q, Banwell MG, Ward JS. A Total Synthesis of the Antifungal Deoxyaminocyclitol Nabscessin B from l-(+)-Tartaric Acid. Org Lett 2017; 20:142-145. [DOI: 10.1021/acs.orglett.7b03495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang Ma
- Research School of Chemistry,
Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Qiao Yan
- Research School of Chemistry,
Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Martin G. Banwell
- Research School of Chemistry,
Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Jas S. Ward
- Research School of Chemistry,
Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
14
|
Taher ES, Banwell MG, Buckler JN, Yan Q, Lan P. The Exploitation of Enzymatically-Derivedcis-1,2-Dihydrocatechols and Related Compounds in the Synthesis of Biologically Active Natural Products. CHEM REC 2017; 18:239-264. [DOI: 10.1002/tcr.201700064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ehab S. Taher
- Research School of Chemistry; Institute of Advanced Studies; The Australian National University; Canberra ACT 2601 Australia
| | - Martin G. Banwell
- Research School of Chemistry; Institute of Advanced Studies; The Australian National University; Canberra ACT 2601 Australia
| | - Joshua N. Buckler
- Research School of Chemistry; Institute of Advanced Studies; The Australian National University; Canberra ACT 2601 Australia
| | - Qiao Yan
- Research School of Chemistry; Institute of Advanced Studies; The Australian National University; Canberra ACT 2601 Australia
| | - Ping Lan
- Department of Food Science and Engineering; College of Science and Engineering; Jinan University; Guangzhou 510632 People's Republic of China
| |
Collapse
|