1
|
Kumar R. Decennary Update on Oxidative-Rearrangement Involving 1,2-Aryl C-C Migration Around Alkenes: Synthetic and Mechanistic Insights. Chem Asian J 2024; 19:e202400053. [PMID: 38741472 DOI: 10.1002/asia.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In recent years, numerous methodologies on oxidative rearrangements of alkenes have been investigated, that produce multipurpose synthons and heterocyclic scaffolds of potential applications. The present review focused on recently established methodologies for oxidative transformation via 1,2-aryl migration in alkenes (2013-2023). Special emphasis has been placed on mechanistic pathways to understand the reactivity pattern of different substrates, challenges to enhance selectivity, the key role of different reagents, and effect of different substituents, and how they affect the rearrangement process. Moreover, synthetic limitations and future direction also have been discussed. We believe, this review offers new synthetic and mechanistic insight to develop elegant precursors and approaches to explore the utilization of alkene-based compounds for natural product synthesis and functional materials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (India
| |
Collapse
|
2
|
Sui JL, Zhong LJ, Xiong BQ, Tang KW, Liu Y. Regioselective synthesis of N-containing polycyclic compounds via radical annulation cyclization of 1,7-dienes with aldehydes. Chem Commun (Camb) 2024; 60:4834-4837. [PMID: 38619398 DOI: 10.1039/d4cc00964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A convenient method for oxidant-promoted radical cascade acylation or decarbonylative alkylation of 1,7-dienes with aldehydes has been established. This method allows for the rapid construction of N-containing polycyclic skeletons in a highly regio- and stereoselective manner. This transformation provides a simple and efficient method for the preparation of a range of tetrahydro-6H-indeno[2,1-c]quinolinone derivatives by sequential formation of three new carbon-carbon bonds. Additionally, this radical cascade cyclization can selectively convert aldehydes into aroyl/primary aliphatic acyl radicals and secondary or tertiary alkyl radicals.
Collapse
Affiliation(s)
- Jia-Li Sui
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
3
|
Xiong B, Shi C, Ren Y, Xu W, Liu Y, Zhu L, Cao F, Tang KW, Yin SF. Zn-Catalyzed Dehydroxylative Phosphorylation of Allylic Alcohols with P(III)-Nucleophiles. J Org Chem 2024; 89:3033-3048. [PMID: 38372254 DOI: 10.1021/acs.joc.3c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel and efficient protocol for the synthesis of diarylallyl-functionalized phosphonates, phosphinates, and phosphine oxides through the zinc-catalyzed dehydroxylative phosphorylation of allylic alcohols with P(III)-nucleophiles via a Michaelis-Arbuzov-type rearrangement is reported. A broad range of allylic alcohols and P(III)-nucleophiles (P(OR)3, ArP(OR)2, and Ar2P(OR)) are well tolerated in this reaction, and the expected dehydroxylative phosphorylation products could be synthesized with good to excellent yields under the optimal reaction conditions. The reaction can be easily scaled up at a gram-synthesis level. Furthermore, through the step-by-step control experiments, kinetic study experiments, and 31P NMR tracking experiments, we acquired insights into the reaction and proposed the possible mechanism for this transformation.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Chonghao Shi
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yining Ren
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Fan Cao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
- College of Science, Central South University of Forestry and Technology, Changsha, Hunan 410004, P. R. China
| |
Collapse
|
4
|
Gómez-Gil S, Rubio-Presa R, Hernández-Ruiz R, Suárez-Pantiga S, Pedrosa MR, Sanz R. Synthesis of 1,4-ketoaldehydes and 1,4-diketones by Mo-catalyzed oxidative cleavage of cyclobutane-1,2-diols. Org Biomol Chem 2023; 21:4185-4190. [PMID: 37128956 DOI: 10.1039/d3ob00436h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A new two-step procedure for the synthesis of 1,4-dicarbonyls has been developed involving an efficient and clean Mo-catalyzed oxidative cleavage of cyclobutane-1,2-diols with DMSO, which is used as solvent and oxidant. The required starting glycols were prepared by nucleophilic additions of organolithiums and Grignard reagents to easily available 2-hydroxycyclobutanones.
Collapse
Affiliation(s)
- Sara Gómez-Gil
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Rubén Rubio-Presa
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Raquel Hernández-Ruiz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Samuel Suárez-Pantiga
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - María R Pedrosa
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Roberto Sanz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
5
|
Ma S, Guo Y, Liu L, Shi L, Lei X, Duan X, Jiao P. gem-Bromonitroalkane Involved Radical 1,2-Aryl Migration of α,α-Diaryl Allyl Alcohol TMS Ether via Visible-Light Photoredox Catalysis. J Org Chem 2023; 88:4743-4756. [PMID: 36971723 DOI: 10.1021/acs.joc.3c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
A mild and efficient coupling method concerning the reactions of gem-bromonitroalkanes with α,α-diaryl allyl alcohol trimethylsilyl ethers was reported. A cascade consisting of visible-light-induced generation of an α-nitroalkyl radical and a subsequent neophyl-type rearrangement was key to realize the coupling reactions. Structurally diverse α-aryl-γ-nitro ketones, especially those bearing a nitrocyclobutyl structure, were prepared in moderate to high yields, which could be converted into spirocyclic nitrones and imines.
Collapse
|
6
|
Zhang J, Deng Y, Mo N, Chen L. Advances in Radical Mediated 1,2-Aryl Migration Reactions of α, α-Diarylallyl Alcohols. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
7
|
Tong Z, Peng X, Tang Z, Yang W, Deng W, Yin SF, Kambe N, Qiu R. DTBP-mediated cross-dehydrogenative coupling of 3-aryl benzofuran-2(3 H)-ones with toluenes/phenols for all-carbon quaternary centers. RSC Adv 2022; 12:35215-35220. [PMID: 36540229 PMCID: PMC9732748 DOI: 10.1039/d2ra06231c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2024] Open
Abstract
We have developed a transition-metal free protocol for efficient cross-dehydrogenative coupling of 3-aryl benzofuran-2(3H)-ones and toluenes/phenols using DTBP as an oxidant. A diverse range of 3-aryl benzofuran-2(3H)-ones, toluenes, and phenols undergo C-H bond cleavage to generate all-carbon quaternary centers in good yields, making this protocol useful for the synthesis of complex molecules. A gram scale experiment was performed in good yield.
Collapse
Affiliation(s)
- Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Xinju Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Zhi Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Weijun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Wei Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
8
|
Yang Z, Yu JT, Pan C. Recent advances in C-H functionalization of 2 H-indazoles. Org Biomol Chem 2022; 20:7746-7764. [PMID: 36178474 DOI: 10.1039/d2ob01463g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2H-Indazoles are one class of the most important nitrogen-containing heterocyclic compounds. The 2H-indazole motif is widely present in bioactive natural products and drug molecules that exhibit distinctive bioactivities. Therefore, much attention has been paid to access diverse 2H-indazole derivatives. Among them, the late-stage functionalization of 2H-indazoles via C-H activation is recognized as an efficient approach for increasing the complexity and diversity of 2H-indazole derivatives. In this review, we summarized recent achievements in the late-stage functionalization of 2H-indazoles, including the C3-functionalization of 2H-indazoles through transition metal-catalyzed C-H activation or a radical pathway, transition metal-catalyzed ortho C2'-H functionalization of 2H-indazoles and remote C-H functionalization at the benzene ring in 2H-indazoles.
Collapse
Affiliation(s)
- Zixian Yang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
9
|
Li Y, Fu ZT, Shen Y, Zhu J, Luo K, Wu L. Divergent Auto‐oxidative Alkylation and Alkanoacylation of Quinoxalin‐2(1H)‐ones with Aliphatic Aldehydes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Li
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Zi-Tong Fu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Yawei Shen
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Jie Zhu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Kai Luo
- Nanjing Agricultural University College of Sciences Weigang No. 1 210095 Nanjing CHINA
| | - Lei Wu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| |
Collapse
|
10
|
Lei Z, Wei S, Zhou L, Zhang Z, Lopez SE, Dolbier WR. Photocatalytic difluoromethylarylation of unactivated alkenes via a (hetero)aryl neophyl-like radical migration. Org Biomol Chem 2022; 20:5712-5715. [PMID: 35838250 DOI: 10.1039/d2ob00813k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photoredox-catalyzed addition of the difluoromethylradical to unactivated alkenes has been found to trigger neophyl-like aryl and heteroaryl migrations which allowed the construction of a diverse series of difluoromethyl ketones. The reaction featured mild reaction conditions and broad substrate scope.
Collapse
Affiliation(s)
- Ziran Lei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Siqi Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China. .,Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - Simon E Lopez
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - William R Dolbier
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| |
Collapse
|
11
|
Zhang K, Liang T, Wang Y, He C, Hu M, Duan XH, Liu L. Oxidative thiocyanation of allylic alcohols: an easy access to allylic thiocyanates with K2S2O8 and NH4SCN. Org Chem Front 2022. [DOI: 10.1039/d1qo01710a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A practical method for the synthesis of allylic thioacyanates from allylic alcohols was disclosed employing K2S2O8 as the oxidant and NH4SCN as the thiocyanate source.
Collapse
Affiliation(s)
- Keyuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tianbing Liang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yulong Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chonglong He
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
12
|
Wu X, Ma Z, Feng T, Zhu C. Radical-mediated rearrangements: past, present, and future. Chem Soc Rev 2021; 50:11577-11613. [PMID: 34661216 DOI: 10.1039/d1cs00529d] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rearrangement reactions, one of the most significant transformations in organic chemistry, play an irreplaceable role in improving synthetic efficiency and molecular complexity. Concomitant cleavage and reconstruction of chemical bonds can display the great artistry and the glamour of synthetic chemistry. Over the past century, ionic rearrangement reactions, in particular those involving cationic pathways, have represented most of the research. Alongside the renaissance of radical chemistry, radical-mediated rearrangements have recently seen a rapid increase of attention from the chemical community. Many new radical rearrangements that extensively reveal the migratory behaviour of functional groups have been unveiled in the last decade. This Review provides a comprehensive perspective on the area from the past to present achievements, and brings up the prospects that may inspire colleagues to develop more useful synthetic tools based on radical rearrangements.
Collapse
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Zhigang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Tingting Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
13
|
Yu WQ, Xie J, Chen Z, Xiong BQ, Liu Y, Tang KW. Visible-Light-Induced Transition-Metal-Free Nitrogen-Centered Radical Strategy for the Synthesis of 2-Acylated 9 H-Pyrrolo[1,2- a]indoles. J Org Chem 2021; 86:13720-13733. [PMID: 34523335 DOI: 10.1021/acs.joc.1c01834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A convenient and efficient visible-light-induced tandem acylation/cyclization of N-propargylindoles with aryl- or alkyl-substituted acyl oxime esters for the synthesis of 2-acyl-substituted 9H-pyrrolo[1,2-a]indoles under transition-metal-free conditions, which proceeds via nitrogen-centered radical-mediated cleavage of the C-C σ-bond in acyl oxime esters, is established. The aryl or alkyl acyl radicals, which come from acyl oxime esters, attack the C-C triple bonds in N-propargylindoles and then go through intramolecular cyclization/isomerization.
Collapse
Affiliation(s)
- Wen-Qin Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
14
|
Hu L, Gao T, Deng Q, Xiong Y. Organoiodine-induced hydroxylation as well as enantioselective alkoxylation/hydroxylation of allylic alcohols via 1,2- aryl migration. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Liu YL, Ouyang YJ, Zheng H, Liu H, Wei WT. Recent advances in acyl radical enabled reactions between aldehydes and alkenes. Chem Commun (Camb) 2021; 57:6111-6120. [PMID: 34113948 DOI: 10.1039/d1cc02112e] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical-mediated functionalization of alkenes has been emerging as an elegant and straightforward protocol to increase molecule complexity. Moreover, the abstraction of a hydrogen atom from aldehydes to afford acyl radicals has evolved as a rising star due to its high atom-economy and the ready availability of aldehydes. Considering the great influence and synthetic potential of acyl radical enabled reactions between aldehydes and alkenes, we provide a summary of the state of the art in this field with a specific emphasis on the working models and corresponding mechanisms. The discussion is divided according to the kind of alkenes and reaction type.
Collapse
Affiliation(s)
- Yi-Lin Liu
- College of Chemistry and Materials Engineering, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Huaihua University, Huaihua, Hunan 418008, China.
| | - Yue-Jun Ouyang
- College of Chemistry and Materials Engineering, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Huaihua University, Huaihua, Hunan 418008, China.
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China and College of Chemistry and Materials Engineering, Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou, 325035, China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou, 325035, China
| | - Wen-Ting Wei
- College of Chemistry and Materials Engineering, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Huaihua University, Huaihua, Hunan 418008, China. and School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
16
|
Xing Y, Li C, Meng J, Zhang Z, Wang X, Wang Z, Ye Y, Sun K. Recent Advances in the Synthetic Use of Migration Reactions of Allyl Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yun Xing
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Chen Li
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Jianping Meng
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Zhen Zhang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Zhichuan Wang
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| |
Collapse
|
17
|
Zhang JJ, Chen D, Qin YQ, Deng W, Luo YY, Xiang JN. Oxidative alkylation/alkynylation of terminal alkenes via alkylaldehyde decarbonylation and 1,2-alkynyl migration. Org Biomol Chem 2021; 19:3154-3158. [PMID: 33885569 DOI: 10.1039/d1ob00212k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A metal-free oxidative alkene alkylation/alkynylation of 1,4-enyn-3-ols with alkylaldehydes has been achieved, which offers a general access to the challenging quaternary carbon-containing but-3-yn-1-ones. The method features excellent functional group tolerance, broad substrate scope and exquisite selectivity, and provides a strategy for the difunctionalization of functional alkenes and utilization of alkylaldehydes as alkylating reagents through decarbonylation and 1,2-alkynyl migration.
Collapse
Affiliation(s)
- Jia-Jia Zhang
- Advanced Catalytic Engineering Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | | | | | | | | |
Collapse
|
18
|
Luo S, Min M, Wu Y, Jiang S, Xiao Y, Song R, Li J. Synthesis of Bulky 1,1‐Diarylalkanes by Copper‐Catalyzed 1,2‐Alkylarylation of Styrenes with
α
‐Carbonyl Alkyl Bromides and Arenes involving C−H Functionalization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shu‐Zheng Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Man‐Yi Min
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Yan‐Chen Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Shuai‐Shuai Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Yu‐Ting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Ren‐Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Jin‐Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
- State Key Laboratory of Chemo/Biosensing and ChemometricsHunan University Changsha 410082 People's Republic of China
| |
Collapse
|
19
|
Luo W, Yang Y, Liu B, Yin B. Iron-Catalyzed Oxidative Decarbonylative α-Alkylation of Acyl-Substituted Furans with Aliphatic Aldehydes as the Alkylating Agents. J Org Chem 2020; 85:9396-9404. [PMID: 32524818 DOI: 10.1021/acs.joc.0c01002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A protocol for FeCl2-catalyzed oxidative decarbonylative α-alkylation of acyl furans using alkyl aldehydes as the alkylating agents has been developed. This protocol affords α-alkyl-α-acylfurans in moderate to good yields in a practical and sustainable fashion. Mechanistic studies suggest that the reaction proceeds via generation of an alkyl radical from the alkyl aldehyde, addition of the radical to the furan ring, and subsequent rearomatization.
Collapse
Affiliation(s)
- Wenkun Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yongjie Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bo Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
20
|
Abrams R, Clayden J. Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce–Smiles Rearrangement Cascades. Angew Chem Int Ed Engl 2020; 59:11600-11606. [DOI: 10.1002/anie.202003632] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Roman Abrams
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
21
|
Abrams R, Clayden J. Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce–Smiles Rearrangement Cascades. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roman Abrams
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
22
|
Liu Y, Chen Z, Wang QL, Chen P, Xie J, Xiong BQ, Zhang PL, Tang KW. Visible Light-Catalyzed Cascade Radical Cyclization of N-Propargylindoles with Acyl Chlorides for the Synthesis of 2-Acyl-9H-pyrrolo[1,2-a]indoles. J Org Chem 2020; 85:2385-2394. [DOI: 10.1021/acs.joc.9b03090] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Qiao-Lin Wang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Pan-Liang Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
23
|
Lin Z, Lu M, Liu B, Gao J, Huang M, Gan Z, Cai S. Oxidative alkylation of alkenes with carbonyl compounds through concomitant 1,2-aryl migration by photoredox catalysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj03733h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient protocol for the construction of 1,5-diketones was realized in the presence of organic fluorophore 4CzIPN, diaryliodonium salt, and visible light irradiation.
Collapse
Affiliation(s)
- Zhaowei Lin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Maojian Lu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Boyi Liu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Jing Gao
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Mingqiang Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Zhenhong Gan
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
- Key Laboratory of Chemical Genomics of Guangdong Province, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University
- Shenzhen
| |
Collapse
|
24
|
Tian T, Wang X, Lv L, Li Z. Iron-catalyzed acylation-functionalization of unactivated alkenes with aldehydes. Chem Commun (Camb) 2020; 56:14637-14640. [DOI: 10.1039/d0cc06774a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, an iron-catalyzed acylation-functionalization of unactivated alkenes with aldehydes via distal group ipso-migration is reported.
Collapse
Affiliation(s)
- Tian Tian
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Xin Wang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Leiyang Lv
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Zhiping Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
25
|
Sarkar S, Banerjee A, Yao W, Patterson EV, Ngai MY. Photocatalytic Radical Aroylation of Unactivated Alkenes: Pathway to β-Functionalized 1,4-, 1,6-, and 1,7-Diketones. ACS Catal 2019; 9:10358-10364. [PMID: 34040817 DOI: 10.1021/acscatal.9b03570] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the development of a photocatalytic strategy for the synthesis of β-functionalized unsymmetrical 1,4-, 1-6 and 1,7-diketones from aroyl chlorides and unactivated alkenes at room temperature. The mild reaction conditions not only tolerate a wide range of functional groups and structural moieties, but also enable migration of a variety of distal groups including (hetero)arenes, nitrile, aldehyde, oxime-derivative, and alkene. The efficiency of chirality transfer, factors that control the distal-group migration, and synthesis of carbo- and heterocycles from the diketones are also described. Mechanistic studies suggest a reaction pathway involving a photocatalytic radical aroylation of unactivated alkenes followed by a distal-group migration, oxidation, and deprotonation to afford the desired diketones.
Collapse
Affiliation(s)
- Satavisha Sarkar
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| | - Arghya Banerjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| | - Wang Yao
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| | - Eric V. Patterson
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| | - Ming-Yu Ngai
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
26
|
Meng F, Zhang H, Li J, Chun J, Shi Y, He H, Chen B, Gao Z, Zhu Y. Highly Selective and Switchable Access to Tetrasubstituted Alkenyl Sulfones and Naphthyl Sulfones: 1,4-Aryl Migration versus Cyclization. Org Lett 2019; 21:8537-8542. [DOI: 10.1021/acs.orglett.9b03003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fei Meng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianlin Chun
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Shi
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Han He
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenbo Gao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
|
28
|
Affiliation(s)
- Wen‐Chao Yang
- Institute of Pesticide, School of Horticulture and Plant ProtectionYangzhou University Yangzhou 225009 People's Republic of China
| | - Jian‐Guo Feng
- Institute of Pesticide, School of Horticulture and Plant ProtectionYangzhou University Yangzhou 225009 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yong‐Qiang Zhang
- College of Plant ProtectionSouthwest University Chongqing 400716 People's Republic of China
| |
Collapse
|
29
|
Liu Y, Wang QL, Chen Z, Zhou CS, Xiong BQ, Zhang PL, Yang CA, Zhou Q. Oxidative radical ring-opening/cyclization of cyclopropane derivatives. Beilstein J Org Chem 2019; 15:256-278. [PMID: 30800176 PMCID: PMC6369981 DOI: 10.3762/bjoc.15.23] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/04/2019] [Indexed: 01/21/2023] Open
Abstract
The ring-opening/cyclization of cyclopropane derivatives has drawn great attention in the past several decades. In this review, recent efforts in the development of oxidative radical ring-opening/cyclization of cyclopropane derivatives, including methylenecyclopropanes, cyclopropyl olefins and cyclopropanols, are described. We hope this review will be of sufficient interest for the scientific community to further advance the application of oxidative radical strategies in the ring-opening/cyclization of cyclopropane derivatives.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Qiao-Lin Wang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Cong-Shan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Pan-Liang Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Chang-An Yang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| |
Collapse
|
30
|
Sivaguru P, Wang Z, Zanoni G, Bi X. Cleavage of carbon–carbon bonds by radical reactions. Chem Soc Rev 2019; 48:2615-2656. [DOI: 10.1039/c8cs00386f] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review provides insights into the in situ generated radicals triggered carbon–carbon bond cleavage reactions.
Collapse
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
31
|
Visible-light-induced 1,2-alkylarylation of alkenes with a-C(sp3)–H bonds of acetonitriles involving neophyl rearrangement under transition-metal-free conditions. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Yu XY, Wang PZ, Yan DM, Lu B, Chen JR, Xiao WJ. Photocatalytic Neophyl Rearrangement and Reduction of Distal Carbon Radicals by Iminyl Radical-Mediated C−C Bond Cleavage. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800834] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao-Ye Yu
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan, Hubei 430079 People's Republic of China
| | - Peng-Zi Wang
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan, Hubei 430079 People's Republic of China
| | - Dong-Mei Yan
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan, Hubei 430079 People's Republic of China
| | - Bin Lu
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan, Hubei 430079 People's Republic of China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan, Hubei 430079 People's Republic of China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan, Hubei 430079 People's Republic of China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
33
|
Li Y, Leng Y, Wang S, Gao Y, Lv H, Chang J, Wu Y, Wu Y. Oxidative acylation of α,α-diarylallylic alcohols: Synthesis of 1,2,4-triarylbutane-1,4-diones. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yong Li
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
| | - Yuting Leng
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation; Zhengzhou University; Zhengzhou 450001 People's Republic of China
| | - Shiwei Wang
- School of Mechanics and Engineering Science; Zhengzhou University; Zhengzhou Henan 450001 People's Republic of China
| | - Yuhui Gao
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
| | - Huiyan Lv
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation; Zhengzhou University; Zhengzhou 450001 People's Republic of China
| | - Yusheng Wu
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
- Tetranov Biopharm LLC; Zhengzhou 450052 People's Republic of China
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
| |
Collapse
|
34
|
Weng WZ, Zhang B. Recent Advances in the Synthesis of β-Functionalized Ketones by Radical-Mediated 1,2-Rearrangement of Allylic Alcohols. Chemistry 2018; 24:10934-10947. [DOI: 10.1002/chem.201800004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Wei-Zhi Weng
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjia Xiang Nanjing 210009 China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjia Xiang Nanjing 210009 China
| |
Collapse
|
35
|
Liu Y, Wang QL, Zhou CS, Xiong BQ, Zhang PL, Yang CA, Tang KW. Oxidative C-C Bond Functionalization of Methylenecyclopropanes with Aldehydes for the Formation of 2-Acyl-3,4-dihydronaphthalenes. J Org Chem 2018; 83:4657-4664. [PMID: 29584957 DOI: 10.1021/acs.joc.8b00427] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new FeCl2- and DTBP (di- tert-butyl peroxide)-promoted oxidative ring-opening and cyclization of methylenecyclopropanes with aldehydes for the synthesis of 2-acyl-3,4-dihydronaphthalenes is presented. This oxidative cyclization reaction proceeds via a radical addition, ring-opening, and cyclization sequence facilitated by a Lewis acid, and it offers a practical and straightforward route for the oxidative cyclization of methylenecyclopropanes with an aromatic carbon and a C(sp2)-H bond by simultaneously forming two new carbon-carbon bonds.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering , Hunan Institute of Science and Technology , Yueyang 414006 , China
| | - Qiao-Lin Wang
- Department of Chemistry and Chemical Engineering , Hunan Institute of Science and Technology , Yueyang 414006 , China
| | - Cong-Shan Zhou
- Department of Chemistry and Chemical Engineering , Hunan Institute of Science and Technology , Yueyang 414006 , China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering , Hunan Institute of Science and Technology , Yueyang 414006 , China
| | - Pan-Liang Zhang
- Department of Chemistry and Chemical Engineering , Hunan Institute of Science and Technology , Yueyang 414006 , China
| | - Chang-An Yang
- Department of Chemistry and Chemical Engineering , Hunan Institute of Science and Technology , Yueyang 414006 , China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering , Hunan Institute of Science and Technology , Yueyang 414006 , China
| |
Collapse
|
36
|
Cao XN, Wan XM, Yang FL, Li K, Hao XQ, Shao T, Zhu X, Song MP. NNN Pincer Ru(II)-Complex-Catalyzed α-Alkylation of Ketones with Alcohols. J Org Chem 2018. [DOI: 10.1021/acs.joc.8b00013] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xiao-Niu Cao
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xiao-Min Wan
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Fa-Liu Yang
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Ke Li
- Shandong Qiaochang Modern Agriculture Co., Ltd, No. 1181 Huanghe 12 Road, Binzhou, Shandong 256600, P. R. China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Tian Shao
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
37
|
Chen R, Yu JT, Cheng J. Metal-free oxidative decarbonylative alkylation of chromones using aliphatic aldehydes. Org Biomol Chem 2018; 16:3568-3571. [DOI: 10.1039/c8ob00720a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A decarbonylative alkylation of chromones via radical conjugate addition under metal-free conditions was developed using aliphatic aldehydes as alkylating reagents.
Collapse
Affiliation(s)
- Rongzhen Chen
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Jiang Cheng
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| |
Collapse
|
38
|
Chen Y, Shu C, Luo F, Xiao X, Zhu G. Photocatalytic acylarylation of unactivated alkenes with diaryliodonium salts toward indanones and related compounds. Chem Commun (Camb) 2018; 54:5373-5376. [DOI: 10.1039/c8cc02636j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A photocatalytic acylarylation of unactivated alkenes using diaryliodonium salts is described, giving 2-benzyl indanones and related compounds in promising yields with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Yongtao Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Chenyun Shu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Fang Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Xiaohui Xiao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| |
Collapse
|