1
|
Lu Q, Mo M, Liang Y, Xu N, Chen L, Xu X, Jin Z. Design and synthesis of strigolactone analogues and mimics containing indolin-2-one scaffold for the Phelipanche control. PEST MANAGEMENT SCIENCE 2025. [PMID: 40370281 DOI: 10.1002/ps.8904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND The broomrapes are root-parasitic weeds widely distributed in the temperate zone area. The effective management on the Phelipanche and Orobanche parasitic weeds still remains challenging to date. RESULTS Novel strigolactone (SL) analogues (X series) and mimics (O series) derived from indolin-2-one were designed and synthesized. Of them, compound O-3 showed nearly ten-fold higher seed germination activity (median effective concentration (EC50) = 0.0066 μm) towards Phelipanche aegyptiaca seeds compared to the control GR24. Moreover, it also showed prominent seed germination activity towards Phelipanche ramosa. At a dosage of 0.2 μm, the glasshouse experiment revealed that compound O-3 not only displayed the profitable P. aegyptiaca control, but also influenced fruit and plant stalk development in tomato cultivation. Theoretical computational studies indicated that compound O-3 could perfectly interact with catalytic triad of OmKAI2d4, and the oxime linker facilitate to release the active D ring species, thereby significantly improving bioactivity. CONCLUSIONS A class of SL mimics incorporating a unique oxime linker has been developed from indolin-2-one. Compound O-3 exhibited the highest seed germination activities toward the parasitic P. aegyptiaca and P. ramosa, and could serve as a promising lead compound for the Phelipanche control. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianghui Lu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Meilin Mo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Yinhao Liang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Niuniu Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Lianfang Chen
- The Agricultural Science Institute of the Second Division of Xinjiang Production and Construction Corps, Tiemenguan, China
| | - Xiaohua Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Zhong Jin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
- College of Chemistry, Xinjiang University, Urumqi, China
| |
Collapse
|
2
|
Li C, Haider I, Wang JY, Quinodoz P, Suarez Duran HG, Méndez LR, Horber R, Fiorilli V, Votta C, Lanfranco L, Correia de Lemos SM, Jouffroy L, Moegle B, Miesch L, De Mesmaeker A, Medema MH, Al-Babili S, Dong L, Bouwmeester HJ. OsCYP706C2 diverts rice strigolactone biosynthesis to a noncanonical pathway branch. SCIENCE ADVANCES 2024; 10:eadq3942. [PMID: 39196928 PMCID: PMC11352842 DOI: 10.1126/sciadv.adq3942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Strigolactones exhibit dual functionality as regulators of plant architecture and signaling molecules in the rhizosphere. The important model crop rice exudes a blend of different strigolactones from its roots. Here, we identify the inaugural noncanonical strigolactone, 4-oxo-methyl carlactonoate (4-oxo-MeCLA), in rice root exudate. Comprehensive, cross-species coexpression analysis allowed us to identify a cytochrome P450, OsCYP706C2, and two methyl transferases as candidate enzymes for this noncanonical rice strigolactone biosynthetic pathway. Heterologous expression in yeast and Nicotiana benthamiana indeed demonstrated the role of these enzymes in the biosynthesis of 4-oxo-MeCLA, which, expectedly, is derived from carlactone as substrate. The oscyp706c2 mutants do not exhibit a tillering phenotype but do have delayed mycorrhizal colonization and altered root phenotype. This work sheds light onto the intricate complexity of strigolactone biosynthesis in rice and delineates its role in symbiosis and development.
Collapse
Affiliation(s)
- Changsheng Li
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Yuelushan Laboratory, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, 410082, Changsha, P. R. China
| | - Imran Haider
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, The BioActives Lab, Thuwal, 23955-6900, Saudi Arabia
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Jian You Wang
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, The BioActives Lab, Thuwal, 23955-6900, Saudi Arabia
| | - Pierre Quinodoz
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | | | - Lucía Reyes Méndez
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Robin Horber
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Samara M. Correia de Lemos
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
- Plant genomics and transcriptomics group, Institute of Biosciences, Sao Paulo State University, 13506-900 Rio Claro, Brazil
| | - Lucile Jouffroy
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Baptiste Moegle
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Alain De Mesmaeker
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, The BioActives Lab, Thuwal, 23955-6900, Saudi Arabia
| | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Harro J. Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
3
|
Daignan-Fornier S, Keita A, Boyer FD. Chemistry of Strigolactones, Key Players in Plant Communication. Chembiochem 2024; 25:e202400133. [PMID: 38607659 DOI: 10.1002/cbic.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/13/2024]
Abstract
Today, the use of artificial pesticides is questionable and the adaptation to global warming is a necessity. The promotion of favorable natural interactions in the rhizosphere offers interesting perspectives for changing the type of agriculture. Strigolactones (SLs), the latest class of phytohormones to be discovered, are also chemical mediators in the rhizosphere. We present in this review the diversity of natural SLs, their analogs, mimics, and probes essential for the biological studies of this class of compounds. Their biosynthesis and access by organic synthesis are highlighted especially concerning noncanonical SLs, the more recently discovered natural SLs. Organic synthesis of analogs, stable isotope-labeled standards, mimics, and probes are also reviewed here. In the last part, the knowledge about the SL perception is described as well as the different inhibitors of SL receptors that have been developed.
Collapse
Affiliation(s)
- Suzanne Daignan-Fornier
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - Antoinette Keita
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Bala IA, Nicolescu A, Georgescu F, Dumitrascu F, Airinei A, Tigoianu R, Georgescu E, Constantinescu-Aruxandei D, Oancea F, Deleanu C. Synthesis and Biological Properties of Fluorescent Strigolactone Mimics Derived from 1,8-Naphthalimide. Molecules 2024; 29:2283. [PMID: 38792143 PMCID: PMC11124091 DOI: 10.3390/molecules29102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Strigolactones (SLs) have potential to be used in sustainable agriculture to mitigate various stresses that plants have to deal with. The natural SLs, as well as the synthetic analogs, are difficult to obtain in sufficient amounts for practical applications. At the same time, fluorescent SLs would be useful for the mechanistic understanding of their effects based on bio-imaging or spectroscopic techniques. In this study, new fluorescent SL mimics containing a substituted 1,8-naphthalimide ring system connected through an ether link to a bioactive furan-2-one moiety were prepared. The structural, spectroscopic, and biological activity of the new SL mimics on phytopathogens were investigated and compared with previously synthetized fluorescent SL mimics. The chemical group at the C-6 position of the naphthalimide ring influences the fluorescence parameters. All SL mimics showed effects similar to GR24 on phytopathogens, indicating their suitability for practical applications. The pattern of the biological activity depended on the fungal species, SL mimic and concentration, and hyphal order. This dependence is probably related to the specificity of each fungal receptor-SL mimic interaction, which will have to be analyzed in-depth. Based on the biological properties and spectroscopic particularities, one SL mimic could be a good candidate for microscopic and spectroscopic investigations.
Collapse
Affiliation(s)
- Ioana-Alexandra Bala
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania;
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania
| | - Alina Nicolescu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| | | | - Florea Dumitrascu
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| | - Anton Airinei
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
| | - Radu Tigoianu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
| | - Emilian Georgescu
- Research Center Oltchim, St. Uzinei 1, 240050 Ramnicu Valcea, Romania;
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania;
| | - Florin Oancea
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania;
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania
| | - Calin Deleanu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| |
Collapse
|
5
|
Li C, Dong L, Durairaj J, Guan JC, Yoshimura M, Quinodoz P, Horber R, Gaus K, Li J, Setotaw YB, Qi J, De Groote H, Wang Y, Thiombiano B, Floková K, Walmsley A, Charnikhova TV, Chojnacka A, Correia de Lemos S, Ding Y, Skibbe D, Hermann K, Screpanti C, De Mesmaeker A, Schmelz EA, Menkir A, Medema M, Van Dijk ADJ, Wu J, Koch KE, Bouwmeester HJ. Maize resistance to witchweed through changes in strigolactone biosynthesis. Science 2023; 379:94-99. [PMID: 36603079 DOI: 10.1126/science.abq4775] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Maize (Zea mays) is a major staple crop in Africa, where its yield and the livelihood of millions are compromised by the parasitic witchweed Striga. Germination of Striga is induced by strigolactones exuded from maize roots into the rhizosphere. In a maize germplasm collection, we identified two strigolactones, zealactol and zealactonoic acid, which stimulate less Striga germination than the major maize strigolactone, zealactone. We then showed that a single cytochrome P450, ZmCYP706C37, catalyzes a series of oxidative steps in the maize-strigolactone biosynthetic pathway. Reduction in activity of this enzyme and two others involved in the pathway, ZmMAX1b and ZmCLAMT1, can change strigolactone composition and reduce Striga germination and infection. These results offer prospects for breeding Striga-resistant maize.
Collapse
Affiliation(s)
- C Li
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - L Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - J Durairaj
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
| | - J-C Guan
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - M Yoshimura
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.,Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland.,Kyoto University, iCeMS, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - P Quinodoz
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - R Horber
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - K Gaus
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - J Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Y B Setotaw
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - J Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - H De Groote
- International Maize and Wheat Improvement Center (CIMMYT), PO Box 1041-00621, Nairobi, Kenya
| | - Y Wang
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - B Thiombiano
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - K Floková
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands.,Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - A Walmsley
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - T V Charnikhova
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - A Chojnacka
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - S Correia de Lemos
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands.,Plant genomics and transcriptomics group, Institute of Biosciences, Sao Paulo State University, 13506-900 Rio Claro, Brazil
| | - Y Ding
- Section of Cell and Developmental Biology, University of California at San Diego; La Jolla, CA 92093, USA
| | - D Skibbe
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC 27709, USA
| | - K Hermann
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - C Screpanti
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - A De Mesmaeker
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - E A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego; La Jolla, CA 92093, USA
| | - A Menkir
- International Institute of Tropical Agriculture, PMB 5320 Oyo Road, Ibadan, Nigeria
| | - M Medema
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
| | - A D J Van Dijk
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
| | - J Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - K E Koch
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - H J Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
6
|
Xu E, Chai L, Zhang S, Yu R, Zhang X, Xu C, Hu Y. Catabolism of strigolactones by a carboxylesterase. NATURE PLANTS 2021; 7:1495-1504. [PMID: 34764442 DOI: 10.1038/s41477-021-01011-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived plant hormones that control shoot branching and communications between host plants and symbiotic fungi or root parasitic plants. Extensive studies have identified the key components participating in SL biosynthesis and signalling, whereas the catabolism or deactivation of endogenous SLs in planta remains largely unknown. Here, we report that the Arabidopsis carboxylesterase 15 (AtCXE15) and its orthologues function as efficient hydrolases of SLs. We show that overexpression of AtCXE15 promotes shoot branching by dampening SL-inhibited axillary bud outgrowth. We further demonstrate that AtCXE15 could bind and efficiently hydrolyse SLs both in vitro and in planta. We also provide evidence that AtCXE15 is capable of catalysing hydrolysis of diverse SL analogues and that such CXE15-dependent catabolism of SLs is evolutionarily conserved in seed plants. These results disclose a catalytic mechanism underlying homoeostatic regulation of SLs in plants, which also provides a rational approach to spatial-temporally manipulate the endogenous SLs and thus architecture of crops and ornamental plants.
Collapse
Affiliation(s)
- Enjun Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Liang Chai
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruixue Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xixi Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- National Center for Plant Gene Research, Beijing, China.
| |
Collapse
|
7
|
Takikawa H. Studies on Strigolactone Based on Synthetic Organic Chemistry. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
8
|
Mori N, Sado A, Xie X, Yoneyama K, Asami K, Seto Y, Nomura T, Yamaguchi S, Yoneyama K, Akiyama K. Chemical identification of 18-hydroxycarlactonoic acid as an LjMAX1 product and in planta conversion of its methyl ester to canonical and non-canonical strigolactones in Lotus japonicus. PHYTOCHEMISTRY 2020; 174:112349. [PMID: 32213359 DOI: 10.1016/j.phytochem.2020.112349] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 05/23/2023]
Abstract
Strigolactones (SLs) are a group of plant apocarotenoids that act as rhizosphere signaling molecules for both arbuscular mycorrhizal fungi and root parasitic plants. They also regulate plant architecture as phytohormones. The model legume Lotus japonicus (synonym of Lotus corniculatus) produces canonical 5-deoxystrigol (5DS) and non-canonical lotuslactone (LL). The biosynthesis pathways of the two SLs remain elusive. In this study, we characterized the L. japonicus MAX1 homolog, LjMAX1, found in the Lotus japonicus genome assembly build 2.5. The L. japonicus max1 LORE1 insertion mutant was deficient in 5DS and LL production. A recombinant LjMAX1 protein expressed in yeast microsomes converted carlactone (CL) to 18-hydroxycarlactonoic acid (18-OH-CLA) via carlactonoic acid (CLA). Identity of 18-OH-CLA was confirmed by comparison of the methyl ester derivative of the MAX1 product with chemically synthesized methyl 18-hydroycarlactonoate (18-OH-MeCLA) using LC-MS/MS. (11R)-CL was detected as an endogenous compound in the root of L. japonicus.13C-labeled CL, CLA, and 18-OH-MeCLA were converted to [13C]-5DS and LL in plant feeding experiments using L. japonicus WT. These results showed that LjMAX1 is the crucial enzyme in the biosynthesis of Lotus SLs and that 18-hydroxylated carlactonoates are possible precursors for SL biosynthesis in L. japonicus.
Collapse
Affiliation(s)
- Narumi Mori
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Aika Sado
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Xiaonan Xie
- Department of Bioproductive Science, Graduate School of Agriculture, Utsunomiya University, Utsunomiya, 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, 321-8505, Japan
| | - Kaori Yoneyama
- Department of Bioproductive Science, Graduate School of Agriculture, Utsunomiya University, Utsunomiya, 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, 321-8505, Japan; Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Kei Asami
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yoshiya Seto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan; Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takahito Nomura
- Department of Bioproductive Science, Graduate School of Agriculture, Utsunomiya University, Utsunomiya, 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, 321-8505, Japan
| | - Shinjiro Yamaguchi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan; Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Koichi Yoneyama
- Department of Bioproductive Science, Graduate School of Agriculture, Utsunomiya University, Utsunomiya, 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, 321-8505, Japan
| | - Kohki Akiyama
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
9
|
Yoshimura M, Dieckmann M, Dakas P, Fonné‐Pfister R, Screpanti C, Hermann K, Rendine S, Quinodoz P, Horoz B, Catak S, De Mesmaeker A. Total Synthesis and Biological Evaluation of Zealactone 1a/b. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Masahiko Yoshimura
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied Biosciences ETH Zürich, CH 8093 Zürich Switzerland
| | - Michael Dieckmann
- Syngenta Crop Protection AGChemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Pierre‐Yves Dakas
- Syngenta Crop Protection AGChemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Raymonde Fonné‐Pfister
- Syngenta Crop Protection AGChemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Claudio Screpanti
- Syngenta Crop Protection AGChemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Katrin Hermann
- Syngenta Crop Protection AGChemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Stefano Rendine
- Syngenta Crop Protection AGChemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Pierre Quinodoz
- Syngenta Crop Protection AGChemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Beyza Horoz
- Bogazici UniversityDepartment of Chemistry Bebek, TR 34342 Istanbul Turkey
| | - Saron Catak
- Bogazici UniversityDepartment of Chemistry Bebek, TR 34342 Istanbul Turkey
| | - Alain De Mesmaeker
- Syngenta Crop Protection AGChemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| |
Collapse
|
10
|
Yamamoto S, Atarashi T, Kuse M, Sugimoto Y, Takikawa H. Concise synthesis of heliolactone, a non-canonical strigolactone isolated from sunflower. Biosci Biotechnol Biochem 2020; 84:1113-1118. [PMID: 32116121 DOI: 10.1080/09168451.2020.1734444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Heliolactone is one of the earliest identified non-canonical strigolactones. Its concise synthesis was achieved by employing Knoevenagel-type condensation and semi-reduction of a malonate intermediate as the key steps. This synthesis was performed in a non-stereoselective manner, and thus a racemic and diastereomeric mixture of heliolactone was obtained. The developed synthetic route is fairly concise and straightforward.
Collapse
Affiliation(s)
- Shunya Yamamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taiki Atarashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Masaki Kuse
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Yoshimura M, Fonné‐Pfister R, Screpanti C, Hermann K, Rendine S, Dieckmann M, Quinodoz P, De Mesmaeker A. Total Synthesis and Biological Evaluation of Heliolactone. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Masahiko Yoshimura
- Laboratorium für Organische Chemie, Department of Chemistry and Applied BiosciencesETH Zürich CH-8093 Zürich Switzerland
| | - Raymonde Fonné‐Pfister
- Syngenta Crop Protection AG, Chemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Claudio Screpanti
- Syngenta Crop Protection AG, Chemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Katrin Hermann
- Syngenta Crop Protection AG, Chemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Stefano Rendine
- Syngenta Crop Protection AG, Chemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Michael Dieckmann
- Syngenta Crop Protection AG, Chemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Pierre Quinodoz
- Syngenta Crop Protection AG, Chemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Alain De Mesmaeker
- Syngenta Crop Protection AG, Chemical Research Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| |
Collapse
|
12
|
Bouwmeester HJ, Fonne‐Pfister R, Screpanti C, De Mesmaeker A. Strigolactone: Pflanzenhormone mit vielversprechenden Eigenschaften. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Harro J. Bouwmeester
- Plant Hormone Biology group Swammerdam Institute for Life Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam Niederlande
| | | | | | | |
Collapse
|
13
|
Bouwmeester HJ, Fonne-Pfister R, Screpanti C, De Mesmaeker A. Strigolactones: Plant Hormones with Promising Features. Angew Chem Int Ed Engl 2019; 58:12778-12786. [PMID: 31282086 DOI: 10.1002/anie.201901626] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Indexed: 12/24/2022]
Abstract
Almost 80 years after the discovery of the first plant hormone, auxin, a few years ago a new class of plant hormones, the strigolactones, was discovered. These molecules have unprecedented biological activity in a number of highly important biological processes in plants but also outside the plant in the rhizosphere, the layer of soil surrounding the roots of plants and teeming with life. The exploitation of this amazing biological activity is not without challenges: the synthesis of strigolactones is complicated and designing the desired activity a difficult task. This minireview describes the current state of knowledge about the strigolactones and how synthetic analogs can be developed that can potentially contribute to the development of a sustainable agriculture.
Collapse
Affiliation(s)
- Harro J Bouwmeester
- Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
14
|
Abstract
Until now, the relative stereochemistry of the noncanonical strigolactone, heliolactone, has remained ambiguous. The total synthesis of heliolactone is described, with the key bond-forming event being a Stille cross-coupling that relied upon a reversal of the nucleophile-electrophile coupling partners. Spectroscopic analysis of synthetic heliolactone (and other stereoisomers) and comparisons with the isolated material enabled the absolute and relative stereochemistry of heliolactone to be secured.
Collapse
Affiliation(s)
- Stone Woo
- School of Chemistry , University of Sydney , Sydney , NSW 2006 , Australia
| | | |
Collapse
|
15
|
Wu H, Luo S, Cao L, Shi H, Wang B, Wang Z. DABCO‐Mediated C−O Bond Formation from C
sp2
‐Halogen Bond‐Containing Compounds and Alkyl Alcohols. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Han‐Qing Wu
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Shi‐He Luo
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
- School of Chemistry and Chemical Engineering/ Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology 381 Wushan Road Guangzhou 510640 People's Republic of China
| | - Liang Cao
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
- School of Chemistry and Chemical Engineering/ Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology 381 Wushan Road Guangzhou 510640 People's Republic of China
| | - Hao‐Nan Shi
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Bo‐Wen Wang
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Zhao‐Yang Wang
- School of Chemistry and Environment/ Key Laboratory of Theoretical Chemistry of EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
- School of Chemistry and Chemical Engineering/ Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology 381 Wushan Road Guangzhou 510640 People's Republic of China
| |
Collapse
|