1
|
Mayer M, Vankova N, Stolz F, Abel B, Heine T, Asmis KR. Identification of a Two-Coordinate Iron(I)-Oxalate Complex. Angew Chem Int Ed Engl 2022; 61:e202117855. [PMID: 35088489 PMCID: PMC9303725 DOI: 10.1002/anie.202117855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 12/16/2022]
Abstract
Exotic oxidation states of the first-row transition metals have recently attracted much interest. In order to investigate the oxidation states of a series of iron-oxalate complexes, an aqueous solution of iron(III) nitrate and oxalic acid was studied by infrared free liquid matrix-assisted laser desorption/ionization as well as ionspray mass spectrometry. Here, we show that iron is not only detected in its common oxidation states +II and +III, but also in its unusual oxidation state +I, detectable in both positive-ion and in negative-ion modes, respectively. Vibrational spectra of the gas phase anionic iron oxalate complexes [FeIII (C2 O4 )2 ]- , [FeII (C2 O4 )CO2 ]- , and [FeI (C2 O4 )]- were measured by means of infrared photodissociation spectroscopy and their structures were assigned by comparison to anharmonic vibrational spectra based on second-order perturbation theory.
Collapse
Affiliation(s)
- Martin Mayer
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLinnéstr. 204103LeipzigGermany
| | - Nina Vankova
- Theoretische ChemieTechnische Universität DresdenBergstr. 66c01062DresdenGermany
| | - Ferdinand Stolz
- Leibniz Institute for Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Bernd Abel
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLinnéstr. 204103LeipzigGermany
- Leibniz Institute for Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Thomas Heine
- Theoretische ChemieTechnische Universität DresdenBergstr. 66c01062DresdenGermany
- Helmholtz-Zentrum Dresden-RossendorfForschungsstelle LeipzigPermoserstr. 1504318LeipzigGermany
- Department of ChemistryYonsei UniversitySeodaemun-gu, Seoul120-749Republic of Korea
| | - Knut R. Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLinnéstr. 204103LeipzigGermany
| |
Collapse
|
2
|
Mayer M, Vankova N, Stolz F, Abel B, Heine T, Asmis KR. Identification of a Two‐Coordinate Iron(I)‐Oxalate Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martin Mayer
- Universität Leipzig: Universitat Leipzig Wilhelm-Ostwald-Institut GERMANY
| | - Nina Vankova
- Technische Universität Dresden: Technische Universitat Dresden Theoretische Chemie GERMANY
| | - Ferdinand Stolz
- Leibniz Institute for Surface Modification: Leibniz-Institut fur Oberflachenmodifizierung eV Chemistry GERMANY
| | - Bernd Abel
- Leibniz Institute for Surface Modification: Leibniz-Institut fur Oberflachenmodifizierung eV Chemistry GERMANY
| | - Thomas Heine
- TU Dresden: Technische Universitat Dresden Theoretische Chemie GERMANY
| | - Knut R Asmis
- Universitat Leipzig Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie Linnéstr. 2 04103 Leipzig GERMANY
| |
Collapse
|
3
|
Neto BAD, Rocha RO, Rodrigues MO. Catalytic Approaches to Multicomponent Reactions: A Critical Review and Perspectives on the Roles of Catalysis. Molecules 2021; 27:132. [PMID: 35011363 PMCID: PMC8746711 DOI: 10.3390/molecules27010132] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/17/2023] Open
Abstract
In this review, we comprehensively describe catalyzed multicomponent reactions (MCRs) and the multiple roles of catalysis combined with key parameters to perform these transformations. Besides improving yields and shortening reaction times, catalysis is vital to achieving greener protocols and to furthering the MCR field of research. Considering that MCRs typically have two or more possible reaction pathways to explain the transformation, catalysis is essential for selecting a reaction route and avoiding byproduct formation. Key parameters, such as temperature, catalyst amounts and reagent quantities, were analyzed. Solvent effects, which are likely the most neglected topic in MCRs, as well as their combined roles with catalysis, are critically discussed. Stereocontrolled MCRs, rarely observed without the presence of a catalytic system, are also presented and discussed in this review. Perspectives on the use of catalytic systems for improved and greener MCRs are finally presented.
Collapse
Affiliation(s)
- Brenno A. D. Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (R.O.R.); (M.O.R.)
| | - Rafael O. Rocha
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (R.O.R.); (M.O.R.)
| | - Marcelo O. Rodrigues
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (R.O.R.); (M.O.R.)
- School of Physics and Astronomy, Nottingham University, Nottingham NG72RD, UK
| |
Collapse
|
4
|
Zhang C, Li J, Wang X, Shen X, Zhu D, Shen R. Metal-Free Synthetic Shortcut to Octahydro-Dipyrroloquinoline Skeletons from 2,5-Cyclohexadienone Derivatives and l-Proline. J Org Chem 2021; 86:10397-10406. [PMID: 34283586 DOI: 10.1021/acs.joc.1c01083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The tandem decarboxylative condensation-dimerization reaction of l-proline with 2,5-cyclohexadienones including p-quinone monoacetals, p-quinol ethers, and p-quinols is reported to provide a concise and rapid synthesis of octahydro-dipyrroloquinoline compounds. The reaction features the use of cost-effective and readily available starting materials, high efficiency, metal-free and green reaction conditions. The reaction is applied to the synthesis of incargranine B aglycone. The discovery of this reaction may suggest a biosynthetic pathway from 2,5-cyclohexadienones and proline for natural ingredients containing pyrroloquinoline moieties.
Collapse
Affiliation(s)
- Can Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jianbin Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xuan Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dunru Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruwei Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Simic M, Jovanovic P, Petkovic M, Tasic G, Jovanovic M, Savic V. Toward the synthesis of incargranine B and seneciobipyrrolidine. Synthesis of octahydro‐dipyrroloquinoline skeleton via dipolar cycloaddition/amination sequence. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Milena Simic
- University of Belgrade Faculty of Pharmacy, Department of Organic Chemistry Belgrade Serbia
| | - Predrag Jovanovic
- University of Belgrade Faculty of Pharmacy, Department of Organic Chemistry Belgrade Serbia
| | - Milos Petkovic
- University of Belgrade Faculty of Pharmacy, Department of Organic Chemistry Belgrade Serbia
| | - Gordana Tasic
- University of Belgrade Faculty of Pharmacy, Department of Organic Chemistry Belgrade Serbia
| | - Milos Jovanovic
- University of Belgrade Faculty of Pharmacy, Department of Organic Chemistry Belgrade Serbia
| | - Vladimir Savic
- University of Belgrade Faculty of Pharmacy, Department of Organic Chemistry Belgrade Serbia
| |
Collapse
|
6
|
Rodrigues MO, Eberlin MN, Neto BAD. How and Why to Investigate Multicomponent Reactions Mechanisms? A Critical Review. CHEM REC 2021; 21:2762-2781. [PMID: 33538117 DOI: 10.1002/tcr.202000165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Indexed: 01/03/2023]
Abstract
We review the most innovative efforts and greatest challenges faced when elucidating multicomponent reactions (MCRs) mechanisms. When compared to traditional reactions, the often two or more concurrent reactions pathways and the greater number of possible intermediates in MCRs turn their mechanistic investigation both a harder and trickier task. The common approaches used to investigate reaction mechanisms are often unable to clarify MCRs mechanisms; hence few but clever approaches are currently used to determine these mechanisms and to depict their key transformations. Their complexity has required most innovative approaches and the use of a number of unique techniques that have shed light over the favored pathway selected from the myriad of alternatives theoretically available for MCRs. This review focuses on the most successful efforts applied by a few leading groups to perform these puzzlingly investigations.
Collapse
Affiliation(s)
- Marcelo O Rodrigues
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil.,School of Physics and Astronomy, Nottingham University, NG72RD, Nottingham, U.K
| | - Marcos N Eberlin
- MackMass Laboratory, PPGENM, School of Engineering, Mackenzie Presbyterian University, São Paulo, SP, 01302-907, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
| |
Collapse
|
7
|
Haarr MB, Sydnes MO. Synthesis of the Hexahydropyrrolo-[3,2-c]-quinoline Core Structure and Strategies for Further Elaboration to Martinelline, Martinellic Acid, Incargranine B, and Seneciobipyrrolidine. Molecules 2021; 26:molecules26020341. [PMID: 33440776 PMCID: PMC7827258 DOI: 10.3390/molecules26020341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/03/2023] Open
Abstract
Natural products are rich sources of interesting scaffolds possessing a plethora of biological activity. With the isolation of the martinella alkaloids in 1995, namely martinelline and martinellic acid, the pyrrolo[3,2-c]quinoline scaffold was discovered. Since then, this scaffold has been found in two additional natural products, viz. incargranine B and seneciobipyrrolidine. These natural products have attracted attention from synthetic chemists both due to the interesting scaffold they contain, but also due to the biological activity they possess. This review highlights the synthetic efforts made for the preparation of these alkaloids and formation of analogues with interesting biological activity.
Collapse
|
8
|
Curti C, Battistini L, Sartori A, Zanardi F. New Developments of the Principle of Vinylogy as Applied to π-Extended Enolate-Type Donor Systems. Chem Rev 2020; 120:2448-2612. [PMID: 32040305 PMCID: PMC7993750 DOI: 10.1021/acs.chemrev.9b00481] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/19/2022]
Abstract
The principle of vinylogy states that the electronic effects of a functional group in a molecule are possibly transmitted to a distal position through interposed conjugated multiple bonds. As an emblematic case, the nucleophilic character of a π-extended enolate-type chain system may be relayed from the legitimate α-site to the vinylogous γ, ε, ..., ω remote carbon sites along the chain, provided that suitable HOMO-raising strategies are adopted to transform the unsaturated pronucleophilic precursors into the reactive polyenolate species. On the other hand, when "unnatural" carbonyl ipso-sites are activated as nucleophiles (umpolung), vinylogation extends the nucleophilic character to "unnatural" β, δ, ... remote sites. Merging the principle of vinylogy with activation modalities and concepts such as iminium ion/enamine organocatalysis, NHC-organocatalysis, cooperative organo/metal catalysis, bifunctional organocatalysis, dicyanoalkylidene activation, and organocascade reactions represents an impressive step forward for all vinylogous transformations. This review article celebrates this evolutionary progress, by collecting, comparing, and critically describing the achievements made over the nine year period 2010-2018, in the generation of vinylogous enolate-type donor substrates and their use in chemical synthesis.
Collapse
Affiliation(s)
| | | | | | - Franca Zanardi
- Dipartimento di Scienze degli
Alimenti e del Farmaco, Università
di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| |
Collapse
|
9
|
Shaaban IA, Ali TE, Assiri MA, Fouda AM, Eledfawy SM, Hassanin NM. Regioselective cyclization reaction of 2-imino-2H-chromene-3-carboxamide with triethyl phosphonoacetate; a combined spectral and computational studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|