1
|
Reza D, Balo R, Otero JM, Fletcher AM, García-Fandino R, Sánchez-Pedregal VM, Davies SG, Estévez RJ, Estévez JC. β-Peptides incorporating polyhydroxylated cyclohexane β-amino acid: synthesis and conformational study. Org Biomol Chem 2023; 21:8535-8547. [PMID: 37840474 DOI: 10.1039/d3ob00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
We describe the synthesis of trihydroxylated cyclohexane β-amino acids from (-)-shikimic acid, in their cis and trans configuration, and the incorporation of the trans isomer into a trans-2-aminocyclohexanecarboxylic acid peptide chain. Subsequently, the hydroxyl groups were partially or totally deprotected. The structural study of the new peptides by FTIR, CD, solution NMR and DFT calculations revealed that they all fold into a 14-helix secondary structure, similarly to the homooligomer of trans-2-aminocyclohexanecarboxylic acid. This means that the high degree of substitution of the cyclohexane ring of the new residue is compatible with the adoption of a stable helical secondary structure and opens opportunities for the design of more elaborate peptidic foldamers with oriented polar substituents at selected positions of the cycloalkane residues.
Collapse
Affiliation(s)
- David Reza
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica. Universidade de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| | - Rosalino Balo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica. Universidade de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - José M Otero
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica. Universidade de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| | - Ai M Fletcher
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Rebeca García-Fandino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica. Universidade de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Víctor M Sánchez-Pedregal
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Stephen G Davies
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ramón J Estévez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica. Universidade de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Juan C Estévez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica. Universidade de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Ortuño RM. Carbocycle-Based Organogelators: Influence of Chirality and Structural Features on Their Supramolecular Arrangements and Properties. Gels 2021; 7:gels7020054. [PMID: 34062755 PMCID: PMC8162357 DOI: 10.3390/gels7020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
The rational design and engineer of organogel-based smart materials and stimuli-responsive materials with tuned properties requires the control of the non-covalent forces driving the hierarchical self-assembly. Chirality, as well as cis/trans relative configuration, also plays a crucial role promoting the morphology and characteristics of the aggregates. Cycloalkane derivatives can provide chiral chemical platforms allowing the incorporation of functional groups and hydrophobic structural units able for a convenient molecular stacking leading to gels. Restriction of the conformational freedom imposed by the ring strain is also a contributing issue that can be modulated by the inclusion of flexible segments. In addition, donor/acceptor moieties can also be incorporated favoring the interactions with light or with charged species. This review offers a perspective on the abilities and properties of carbocycle-based organogelators starting from simple cycloalkane derivatives, which were the key to establish the basis for an effective self-assembling, to sophisticated polycyclic compounds with manifold properties and applications.
Collapse
Affiliation(s)
- Rosa M Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Darapaneni CM, Ghosh P, Ghosh T, Maayan G. Unique β‐Turn Peptoid Structures and Their Application as Asymmetric Catalysts. Chemistry 2020; 26:9573-9579. [DOI: 10.1002/chem.202000595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Pritam Ghosh
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Totan Ghosh
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Galia Maayan
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
4
|
Chain-Branched Polyhydroxylated Octahydro- 1H-Indoles as Potential Leads against Lysosomal Storage Diseases. Pharmaceuticals (Basel) 2019; 12:ph12020047. [PMID: 30934879 PMCID: PMC6631223 DOI: 10.3390/ph12020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
Here, the synthesis and glycosidase inhibition properties of the two first known 3-ethyloctahydro-1H-indole-4,5,6-triols are reported. This study shows the transformation of d-glucose into polyhydroxylated 1-(2-nitrocyclohexane) acetaldehydes, followed by a protocol involving the formation of the azacyclopentane ring. Results of inhibitory potency assays and docking calculations show that at least one of them could be a lead for optimization in the search for compounds that behave like folding chaperones in lysosomal storage diseases.
Collapse
|
5
|
Pi-Boleda B, Campos M, Sans M, Basavilbaso A, Illa O, Branchadell V, Estévez JC, Ortuño RM. Synthesis and Gelling Abilities of Polyfunctional Cyclohexane-1,2-dicarboxylic Acid Bisamides: Influence of the Hydroxyl Groups. Molecules 2019; 24:molecules24020352. [PMID: 30669453 PMCID: PMC6358840 DOI: 10.3390/molecules24020352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
New enantiomerically pure C16-alkyl diamides derived from trihydroxy cyclohexane-1,2-dicarboxylic acid have been synthesized from (−)-shikimic acid. The hydroxyl groups in these compounds are free or, alternatively, they present full or partial protection. Their gelling abilities towards several solvents have been tested and rationalized by means of the combined use of Hansen solubility parameters, scanning electron microscopy (SEM), and circular dichroism (CD), as well as computational calculations. All the results allowed us to account for the capability of each type of organogelator to interact with different solvents and for the main mode of aggregation. Thus, compounds with fully protected hydroxyl groups are good organogelators for methanol and ethanol. In contrast, a related compound bearing three free hydroxyl groups is insoluble in water and polar solvents including alcohols but it is able to gelate some low-polarity solvents. This last behavior can be justified by strong hydrogen bonding between molecules of organogelator, which competes advantageously with polar solvent interactions. As an intermediate case, an organogelator with two free hydroxyl groups presents an ambivalent ability to gelate both apolar and polar solvents by means of two aggregation patterns. These involve hydrogen bonding interactions of the unprotected hydroxyl groups in apolar solvents and intermolecular interactions between amide groups in polar ones.
Collapse
Affiliation(s)
- Bernat Pi-Boleda
- Department de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - María Campos
- CIQUS (Centro Singular de Investigación en Química Biológica y Materiales Moleculares), Departamento de Química Orgánica Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Marta Sans
- Department de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
- The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Antonio Basavilbaso
- CIQUS (Centro Singular de Investigación en Química Biológica y Materiales Moleculares), Departamento de Química Orgánica Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ona Illa
- Department de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Vicenç Branchadell
- Department de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Juan Carlos Estévez
- CIQUS (Centro Singular de Investigación en Química Biológica y Materiales Moleculares), Departamento de Química Orgánica Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Rosa M Ortuño
- Department de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
6
|
Candeias NR, Assoah B, Simeonov SP. Production and Synthetic Modifications of Shikimic Acid. Chem Rev 2018; 118:10458-10550. [PMID: 30350584 DOI: 10.1021/acs.chemrev.8b00350] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Shikimic acid is a natural product of industrial importance utilized as a precursor of the antiviral Tamiflu. It is nowadays produced in multihundred ton amounts from the extraction of star anise ( Illicium verum) or by fermentation processes. Apart from the production of Tamiflu, shikimic acid has gathered particular notoriety as its useful carbon backbone and inherent chirality provide extensive use as a versatile chiral precursor in organic synthesis. This review provides an overview of the main synthetic and microbial methods for production of shikimic acid and highlights selected methods for isolation from available plant sources. Furthermore, we have attempted to demonstrate the synthetic utility of shikimic acid by covering the most important synthetic modifications and related applications, namely, synthesis of Tamiflu and derivatives, synthetic manipulations of the main functional groups, and its use as biorenewable material and in total synthesis. Given its rich chemistry and availability, shikimic acid is undoubtedly a promising platform molecule for further exploration. Therefore, in the end, we outline some challenges and promising future directions.
Collapse
Affiliation(s)
- Nuno R Candeias
- Laboratory of Chemistry and Bioengineering , Tampere University of Technology , Korkeakoulunkatu 8 , 33101 Tampere , Finland
| | - Benedicta Assoah
- Laboratory of Chemistry and Bioengineering , Tampere University of Technology , Korkeakoulunkatu 8 , 33101 Tampere , Finland
| | - Svilen P Simeonov
- Laboratory Organic Synthesis and Stereochemistry, Institute of Organic Chemistry with Centre of Phytochemistry , Bulgarian Academy of Sciences , Acad. G. Bontchev str. Bl. 9 , 1113 Sofia , Bulgaria
| |
Collapse
|