1
|
Yepes P, Suárez-Sobrino ÁL, Rodríguez MA, Ballesteros A. Silylium-Catalyzed Regio- and Stereoselective Carbosilylation of Ynamides with Allylic Trimethylsilanes. Org Lett 2023; 25:1020-1024. [PMID: 36749888 PMCID: PMC9942199 DOI: 10.1021/acs.orglett.3c00221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The regio- and stereoselective carbosilylation of tosylynamides with allylic trimethylsilanes takes place under mild conditions in the presence of catalytic TMSNTf2 or HNTf2 to give (Z)-α-allyl-β-trimethylsilylenamides with good yields. Theoretical calculations show the activation of the C-C triple bond of the ynamides by the trimethylsilylium ion and formation of a β-trimethylsilylketenimonium cation. Further transformations of the products demonstrate the synthetic utility of this reaction.
Collapse
Affiliation(s)
- Paz Yepes
- Departamento
de Química Orgánica e Inorgánica, Instituto Universitario
de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Ángel L. Suárez-Sobrino
- Departamento
de Química Orgánica e Inorgánica, Instituto Universitario
de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Miguel A. Rodríguez
- Departamento
de Química, Centro de Investigación en Síntesis
Orgánica, Universidad de la Rioja, Madre de Dios, 51, 26006 Logroño, Spain
| | - Alfredo Ballesteros
- Departamento
de Química Orgánica e Inorgánica, Instituto Universitario
de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain,
| |
Collapse
|
2
|
Ríos P, Rodríguez A, Conejero S. Activation of Si-H and B-H bonds by Lewis acidic transition metals and p-block elements: same, but different. Chem Sci 2022; 13:7392-7418. [PMID: 35872827 PMCID: PMC9241980 DOI: 10.1039/d2sc02324e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023] Open
Abstract
In this Perspective we discuss the ability of transition metal complexes to activate and cleave the Si-H and B-H bonds of hydrosilanes and hydroboranes (tri- and tetra-coordinated) in an electrophilic manner, avoiding the need for the metal centre to undergo two-electron processes (oxidative addition/reductive elimination). A formal polarization of E-H bonds (E = Si, B) upon their coordination to the metal centre to form σ-EH complexes (with coordination modes η1 or η2) favors this type of bond activation that can lead to reactivities involving the formation of transient silylium and borenium/boronium cations similar to those proposed in silylation and borylation processes catalysed by boron and aluminium Lewis acids. We compare the reactivity of transition metal complexes and boron/aluminium Lewis acids through a series of catalytic reactions in which pieces of evidence suggest mechanisms involving electrophilic reaction pathways.
Collapse
Affiliation(s)
- Pablo Ríos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Amor Rodríguez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Salvador Conejero
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
3
|
Minyaylo EO, Kudryavtseva AI, Zubova VY, Anisimov AA, Zaitsev AV, Ol'shevskaya VA, Dolgushin FM, Peregudov AS, Muzafarov AM. Synthesis of mono- and polyfunctional organosilicon derivatives of polyhedral carboranes for the preparation of hybrid polymer materials. NEW J CHEM 2022. [DOI: 10.1039/d2nj01266a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of mono- and polyfunctional carborane organosilicon derivatives were prepared with good yields based on the hydrosilylation reactions of allylcarboranes with hydride-containing organosilicon compounds such as tetramethyldisiloxane, decamethylpentasiloxane and triethoxysilane in the presence of Karstedt's catalyst.
Collapse
Affiliation(s)
- E. O. Minyaylo
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - A. I. Kudryavtseva
- D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - V. Y. Zubova
- D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - A. A. Anisimov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - A. V. Zaitsev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - V. A. Ol'shevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - F. M. Dolgushin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A. S. Peregudov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - A. M. Muzafarov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Golling S, Leroux FR, Donnard M. Versatile Access to Tetrasubstituted 2-Amidoacroleins through Formal Silylformylation of Ynamides. Org Lett 2021; 23:8093-8097. [PMID: 34612044 DOI: 10.1021/acs.orglett.1c03141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this paper we are reporting the first regio- and stereoselective silylformylation of ynamides. This reaction is tolerant to a wide range of functional groups around the ynamides. The substitution of CO by an isocyanide makes this reaction safer and more practical than standard silylformylation reactions. It overall represents a versatile and rapid access to various tetrasubstituted 3-silyl-2-amidoacrolein derivatives. The synthetic potential of these new building blocks has been evaluated by performing several postfunctionalization.
Collapse
Affiliation(s)
- Stéphane Golling
- Université de Strasbourg, CNRS, Université de Haute-Alsace (LIMA UMR 7042), École Européenne de Chimie, Polymères et Matériaux (ECPM), F-67000 Strasbourg, France
| | - Frédéric R Leroux
- Université de Strasbourg, CNRS, Université de Haute-Alsace (LIMA UMR 7042), École Européenne de Chimie, Polymères et Matériaux (ECPM), F-67000 Strasbourg, France
| | - Morgan Donnard
- Université de Strasbourg, CNRS, Université de Haute-Alsace (LIMA UMR 7042), École Européenne de Chimie, Polymères et Matériaux (ECPM), F-67000 Strasbourg, France
| |
Collapse
|
5
|
Gao W, Ding H, Yu T, Wang Z, Ding S. Iridium-catalyzed regioselective hydrosilylation of internal alkynes facilitated by directing and steric effects. Org Biomol Chem 2021; 19:6216-6220. [PMID: 34195740 DOI: 10.1039/d1ob00910a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we reported the iridium-catalyzed hydrosilylation of internal alkynes under simple and mild conditions. The intrinsic functional groups of alkyne substrates were disclosed to be crucial in facilitating both the hydrosilylation process and related regioselectivity owing to their coordination capability towards the iridium catalyst. Utilization of the steric trimethylsilyl-protected trihydroxysilane proved to be another critical factor in ensuring the efficient proceeding of this process.
Collapse
Affiliation(s)
- Weiwei Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Huan Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tian Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhen Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
6
|
Palladium-catalyzed hydrosilylation of ynones to access silicon-stereogenic silylenones by stereospecific aromatic interaction-assisted Si-H activation. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9939-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Nogues C, Argouarch G. Rhodium‐Catalyzed Direct Reductive Amination of Aldehydes and Ketones with Hydrosilanes. ChemistrySelect 2020. [DOI: 10.1002/slct.202001002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Tani T, Sohma Y, Tsuchimoto T. Zinc/Indium Bimetallic Lewis Acid Relay Catalysis for Dehydrogenative Silylation/Hydrosilylation Reaction of Terminal Alkynes with Bis(hydrosilane)s. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tomohiro Tani
- Department of Applied Chemistry, School of Science and Technology Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Yudai Sohma
- Department of Applied Chemistry, School of Science and Technology Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Teruhisa Tsuchimoto
- Department of Applied Chemistry, School of Science and Technology Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| |
Collapse
|
9
|
Debrauwer V, Turlik A, Rummler L, Prescimone A, Blanchard N, Houk KN, Bizet V. Ligand-Controlled Regiodivergent Palladium-Catalyzed Hydrogermylation of Ynamides. J Am Chem Soc 2020; 142:11153-11164. [DOI: 10.1021/jacs.0c03556] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vincent Debrauwer
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Aneta Turlik
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Lénaic Rummler
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Alessandro Prescimone
- Chemistry Department, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Nicolas Blanchard
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Vincent Bizet
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| |
Collapse
|
10
|
Zhang Y, Chen Y, Zhang Z, Liu S, Shen X. Synthesis of Stereodefined Trisubstituted Alkenyl Silanes Enabled by Borane Catalysis and Nickel Catalysis. Org Lett 2020; 22:970-975. [PMID: 31977233 DOI: 10.1021/acs.orglett.9b04505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regioselective and stereoselective synthesis of trisubstituted alkenyl silanes via hydrosilylation is challenging. Herein, we report the first β-anti-selective addition of silanes to thioalkynes with B(C6F5)3 as the catalyst. The reaction shows broad substrate scope. The products were proven to be useful intermediates to other trisubstituted alkenyl silanes by Ni-catalyzed stereoretentive cross-coupling reactions of the C-S bond. A mechanism study suggests that nucleophilic attack of thioalkyne to an activated silylium intermediate might be the rate-determining step.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education , Wuhan University , 299 Bayi Road , Wuhan , Hubei 430072 , China
| | - Yanran Chen
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education , Wuhan University , 299 Bayi Road , Wuhan , Hubei 430072 , China
| | - Zeguo Zhang
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education , Wuhan University , 299 Bayi Road , Wuhan , Hubei 430072 , China
| | - Shanshan Liu
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education , Wuhan University , 299 Bayi Road , Wuhan , Hubei 430072 , China
| | - Xiao Shen
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education , Wuhan University , 299 Bayi Road , Wuhan , Hubei 430072 , China
| |
Collapse
|
11
|
Beletskaya IP, Nájera C, Yus M. Catalysis and regioselectivity in hydrofunctionalization reactions of unsaturated carbon bonds. Part I. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4916] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Nogues C, Argouarch G. Synthesis of dialkoxydiphenylsilanes via the rhodium-catalyzed hydrosilylation of aldehydes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Coumarin-containing hybrids and their anticancer activities. Eur J Med Chem 2019; 181:111587. [PMID: 31404864 DOI: 10.1016/j.ejmech.2019.111587] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/21/2019] [Accepted: 08/04/2019] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide, and it results in around 9 million deaths annually. The anticancer agents play an intriguing role in the treatment of cancers, while the severe anticancer scenario and the emergence of drug-resistant especially multidrug-resistant cancers create a huge demand for novel anticancer drugs with different mechanisms of action. The coumarin scaffold is ubiquitous in nature and is a highly privileged motif for the development of novel drugs due to its biodiversity and versatility. Coumarin derivatives can exert diverse antiproliferative mechanisms, and some of them such as Irosustat are under clinical trials for the treatment of various cancers, revealing their potential as putative anticancer drugs. Hybridization of coumarin moiety with other anticancer pharmacophores is a promising strategy to reduce side effects, overcome the drug resistance, and may provide valuable therapeutic intervention for the treatment of cancers. Thus, coumarin-containing hybrids occupy an important position in the development of novel anticancer agents. This review aims to summarize the recent advances made towards the development of coumarin-containing hybrids as potential anticancer agents, covering articles published between 2015 and 2019, and the structure-activity relationship together with mechanisms of action are also discussed.
Collapse
|
14
|
Debbarma S, Bera SS, Maji MS. Harnessing Stereospecific Z-Enamides through Silver-Free Cp*Rh(III) Catalysis by Using Isoxazoles as Masked Electrophiles. Org Lett 2019; 21:835-839. [DOI: 10.1021/acs.orglett.8b04130] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suvankar Debbarma
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sourav Sekhar Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
15
|
Abstract
Chlorodicarbonylrhodium(i) dimer: a simple catalyst for the reduction of carbonyl compounds also.
Collapse
|
16
|
Zhang W, Johnson GM, Guan Z, He YH. Regio- and Stereoselective Hydrosulfonylation of Electron-Deficient Alkynes: Access to Both E- and Z-β-Sulfonyl-α,β-Unsaturated Carbonyl Compounds. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wei Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 People's Republic of China
| | - Gabriel M. Johnson
- Chemistry Department; College of Saint Benedict and Saint John's University; MN 56374 USA
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 People's Republic of China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 People's Republic of China
| |
Collapse
|