1
|
Hu L, Zhao J. Ynamide Coupling Reagents: Origin and Advances. Acc Chem Res 2024; 57:855-869. [PMID: 38452397 PMCID: PMC10956395 DOI: 10.1021/acs.accounts.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Since the pioneering work of Curtius and Fischer, chemical peptide synthesis has witnessed a century's development and evolved into a routine technology. However, it is far from perfect. In particular, it is challenged by sustainable development because the state-of-the-art of peptide synthesis heavily relies on legacy reagents and technologies developed before the establishment of green chemistry. Over the past three decades, a broad range of efforts have been made for greening peptide synthesis, among which peptide synthesis using unprotected amino acid represents an ideal and promising strategy because it does not require protection and deprotection steps. Unfortunately, C → N peptide synthesis employing unprotected amino acids has been plagued by undesired polymerization, while N → C inverse peptide synthesis with unprotected amino acids is retarded by severe racemization/epimerization owing to the iterative activation and aminolysis of high racemization/epimerization susceptible peptidyl acids. Consequently, there is an urgent need to develop innovative coupling reagents and strategies with novel mechanisms that can address the long-standing notorious racemization/epimerization issue of peptide synthesis.This Account will describe our efforts in discovery of ynamide coupling reagents and their application in greening peptide synthesis. Over an eight-year journey, ynamide coupling reagents have evolved into a class of general coupling reagents for both amide and ester bond formation. In particular, the superiority of ynamide coupling reagents in suppressing racemization/epimerization enabled them to be effective for peptide fragment condensation, and head-to-tail cyclization, as well as precise incorporation of thioamide substitutions into peptide backbones. The first practical inverse peptide synthesis using unprotected amino acids was successfully accomplished by harnessing such features and taking advantage of a transient protection strategy. Ynamide coupling reagent-mediated ester bond formation enabled efficient intermolecular esterification and macrolactonization with preservation of α-chirality and the configuration of the conjugated α,β-C-C double bond. To make ynamide coupling reagents readily available with reasonable cost and convenience, we have developed a scalable one-step synthetic method from cheap starting materials. Furthermore, a water-removable ynamide coupling reagent was developed, offering a column-free purification of the target coupling product. In addition, the recycle of ynamide coupling reagent was accomplished, thereby paving the way for their sustainable industrial application.As such, this Account presents the whole story of the origin, mechanistic insights, preparation, synthetic applications, and recycle of ynamide coupling reagents with a perspective that highlights their future impact on peptide synthesis.
Collapse
Affiliation(s)
- Long Hu
- Affiliated Cancer Hospital, Guangdong
Provincial Key Laboratory of Major Obstetric Diseases, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junfeng Zhao
- Affiliated Cancer Hospital, Guangdong
Provincial Key Laboratory of Major Obstetric Diseases, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
2
|
Guo YY, Zhang JY, Sun JF, Gao H. A comprehensive review of small-molecule drugs for the treatment of type 2 diabetes mellitus: Synthetic approaches and clinical applications. Eur J Med Chem 2024; 267:116185. [PMID: 38295688 DOI: 10.1016/j.ejmech.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a long-term metabolic disorder characterized by the body's resistance to insulin and inadequate production of insulin. Small molecule drugs to treat T2DM mainly control blood sugar levels by improving insulin sensitivity, increasing insulin secretion, or reducing liver glycogen production. With the deepening of research on the pathogenesis of diabetes, many drugs with new targets and mechanisms of action have been discovered. The targets of the drugs for T2DM are mainly dipeptidyl peptidase IV inhibitors (DPP4), sodium/glucose cotransporter 2 inhibitors (SGLT2), sulfonylurea receptor modulators (SUR), peroxisome proliferator-activated receptor γ agonists (PPARγ), etc. We are of the opinion that acquiring a comprehensive comprehension of the synthetic procedures employed in drug molecule production will serve as a source of inventive and pragmatic inspiration for the advancement of novel, more potent, and feasible synthetic methodologies. This review aims to outline the clinical applications and synthetic routes of some representative drugs to treat T2DM, which will drive the discovery of new, more effective T2DM drugs.
Collapse
Affiliation(s)
- Yuan-Yuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, 450044, China; Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Hua Gao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Zhu L, Deng L, Xie Y, Liu L, Ma X, Liu R. Mechanochemistry, Solvent-free and scale-up: Application toward coupling of Acids and Amines to Amides. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
4
|
Pradhan S, Sankar RV, Gunanathan C. A Boron-Nitrogen Double Transborylation Strategy for Borane-Catalyzed Hydroboration of Nitriles. J Org Chem 2022; 87:12386-12396. [PMID: 36045008 DOI: 10.1021/acs.joc.2c01655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Organoborane-catalyzed hydroboration of nitriles provides N,N-diborylamines, which act as efficient synthons for the synthesis of primary amines and secondary amides. Known nitrile hydroboration methods are dominated by metal catalysis. Simple and metal-free hydroboration of nitriles using diborane [H-B-9-BBN]2 as a catalyst and pinacolborane as a turnover reagent is reported. The reaction of monomeric H-B-9-BBN with nitriles leads to the hydrido-bridged diborylimine intermediate; a subsequent sequential double hydroboration-transborylation pathway involving B-N/B-H σ bond metathesis is proposed.
Collapse
Affiliation(s)
- Subham Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| |
Collapse
|
5
|
Qing B, Bai X, Huang L, Zhao J, Zhou P, Feng H. Vinyl fluorosulfonamide: a practical vinyl electrophilic reagent for mild and efficient synthesis of ketones under catalyst- and additive-free conditions. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2085276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bin Qing
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Xueying Bai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Jiahui Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Pengyu Zhou
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| |
Collapse
|
6
|
Xie Y, Feng H, Qi Y, Huang J, Huang L. Chemodivergent Synthesis of Oxazolidin-2-ones via Cu-Catalyzed Carboxyl Transfer Annulation of Propiolic Acids with Amines. J Org Chem 2021; 86:16940-16947. [PMID: 34726412 DOI: 10.1021/acs.joc.1c02099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Carboxylic acids are widely found in natural products and bioactive molecules and have served as raw material compounds in industry. We now report the first example of copper(I)-catalyzed carboxyl transfer annulation of propiolic acids with amines, thereby chemodivergently constructing the oxazolidine-2-ones. In this reaction, two kinds of key propargyamine intermediates were formed through sequential CuI/NBS-catalyzed oxidative deamination/decarboxylative alkynylation or CuI-catalyzed decarboxylative hydroamination/alkynylation. The advantages of this decarboxylative coupling/carboxylative cyclization are showcased in the atom economy, chemical specificity, and functional group tolerance.
Collapse
Affiliation(s)
- Yujuan Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.,Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai 200237, China
| | - Yayu Qi
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Junhai Huang
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
7
|
Wang Z, Wang X, Wang P, Zhao J. Allenone-Mediated Racemization/Epimerization-Free Peptide Bond Formation and Its Application in Peptide Synthesis. J Am Chem Soc 2021; 143:10374-10381. [PMID: 34191506 DOI: 10.1021/jacs.1c04614] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allenone has been identified as a highly effective peptide coupling reagent for the first time. The peptide bond was formed with an α-carbonyl vinyl ester as the key intermediate, the formation and subsequent aminolysis of which proceed spontaneously in a racemization-/epimerization-free manner. The allenone coupling reagent not only is effective for the synthesis of simple amides and dipeptides but is also amenable to peptide fragment condensation and solid-phase peptide synthesis (SPPS). The robustness of the allenone-mediated peptide bond formation was showcased incisively by the synthesis of carfilzomib, which involved a rare racemization-/epimerization-free N to C peptide elongation strategy. Furthermore, the successful synthesis of the model difficult peptide ACP (65-74) on a solid support suggested that this method was compatible with SPPS. This method combines the advantages of conventional active esters and coupling reagents, while overcoming the disadvantages of both strategies. Thus, this allenone-mediated peptide bond formation strategy represents a disruptive innovation in peptide synthesis.
Collapse
Affiliation(s)
- Zhengning Wang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, P. R. China.,College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Xuewei Wang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, P. R. China.,College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Penghui Wang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, P. R. China.,College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Junfeng Zhao
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, P. R. China.,School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.,College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
8
|
Catalytic and non-catalytic amidation of carboxylic acid substrates. Mol Divers 2021; 26:1311-1344. [PMID: 34120303 DOI: 10.1007/s11030-021-10252-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
The present review offers an apt summary of amide bond formation with carboxylic acid substrates by taking advantage of several methods. Carboxamides can be regarded as a substantial part of organic and medicinal chemistry due to their utility in synthesizing peptides, lactams, and more than 25% of familiar drugs. Moreover, they play a leading role in the synthesis of bioactive products with anticancer, antifungal, and antibacterial properties. The data are arranged based on the type and amount of reagents used to conduct amidation and are also divided into the following categories: catalytic amidation of carboxylic acids, non-catalytic amidation, and transamidation.
Collapse
|
9
|
Yao Z, Feng H, Xi H, Xi C, Liu W. CF 3SO 3H-enabled cascade ring-opening/dearomatization of indole derivatives to polycyclic heterocycles. Org Biomol Chem 2021; 19:4469-4473. [PMID: 33913995 DOI: 10.1039/d1ob00712b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel dearomatization process to produce fused polycyclic indolines via a CF3SO3H-mediated cascade ring-opening of a β-lactam and hydroaminative cyclization is demonstrated. It provides a new strategy for the synthesis of important polycyclic indoline-2-amine derivatives in moderate to excellent yields, as well as with good functional group tolerance. Moreover, transformation of the product was performed to deliver the corresponding acid, alcohol and amide smoothly.
Collapse
Affiliation(s)
- Zhengdong Yao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Hui Xi
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Chuanjun Xi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Weiping Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
10
|
Fu Z, Wang X, Tao S, Bu Q, Wei D, Liu N. Manganese Catalyzed Direct Amidation of Esters with Amines. J Org Chem 2021; 86:2339-2358. [DOI: 10.1021/acs.joc.0c02478] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhengqiang Fu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Xinghua Wang
- College of Chemistry, Center of Computational Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Sheng Tao
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Qingqing Bu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Donghui Wei
- College of Chemistry, Center of Computational Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| |
Collapse
|
11
|
Zeng JJ, Zhao B, Tang XB, Han S, Yang ZQ, Liu ZP, Zhang W, Lu J. Metal-free catalytic hydrocarboxylation of hexafluorobut-2-yne. RSC Adv 2021; 11:38938-38943. [PMID: 35493246 PMCID: PMC9044190 DOI: 10.1039/d1ra06526b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022] Open
Abstract
An efficient method for stereoselective synthesis of trifluorinated enol esters catalyzed by base was introduced.
Collapse
Affiliation(s)
- Ji-Jun Zeng
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Bo Zhao
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Xiao-Bo Tang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Sheng Han
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Zhi-Qiang Yang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Ze-Peng Liu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Wei Zhang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Jian Lu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| |
Collapse
|
12
|
Xu X, Van der Eycken EV, Feng H. Metal‐Free
Decarboxylation of α,
β‐Unsaturated
Carboxylic Acids for Carbon–Carbon and Carbon–Heteroatom Coupling Reactions. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xianjun Xu
- College of Chemistry and Chemical Engineering & Shanghai Engineering Research Center of Textile Chemistry and Cleaner Production, Shanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
- Laboratory for Organic & Microwave‐Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave‐Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
- Peoples’ Friendship University of Russia (RUDN University) 6 Miklukho‐Maklaya Street Moscow 117198 Russia
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering & Shanghai Engineering Research Center of Textile Chemistry and Cleaner Production, Shanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| |
Collapse
|
13
|
Sun F, Feng H, Huang L, Liu W. Lewis Acid‐Free Ynoate‐Mediated Chemoselective Reduction of Carboxylic Acids to Primary Alcohols. ChemistrySelect 2020. [DOI: 10.1002/slct.202002728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Feixiang Sun
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science Shanghai 201620 China
| | - Huangdi Feng
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science Shanghai 201620 China
| | - Liliang Huang
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science Shanghai 201620 China
| | - Weiping Liu
- College of ChemistryChemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| |
Collapse
|
14
|
Massolo E, Pirola M, Benaglia M. Amide Bond Formation Strategies: Latest Advances on a Dateless Transformation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000080] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Elisabetta Massolo
- Dipartimento di Chimica; Università degli Studi di Milano; Via Golgi 19 20133 Milano Italy
| | - Margherita Pirola
- Dipartimento di Chimica; Università degli Studi di Milano; Via Golgi 19 20133 Milano Italy
| | - Maurizio Benaglia
- Dipartimento di Chimica; Università degli Studi di Milano; Via Golgi 19 20133 Milano Italy
| |
Collapse
|
15
|
Lundberg H, Tinnis F, Adolfsson H. Zirconium catalyzed amide formation without water scavenging. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Helena Lundberg
- Department of Chemistry, Division of Organic Chemistry Royal Institute of Technology SE‐10044 Stockholm Sweden
| | - Fredrik Tinnis
- Department of Organic Chemistry Stockholm University, Arrhenius Laboratory SE‐10691 Stockholm Sweden
| | - Hans Adolfsson
- Department of Chemistry Umeå University SE‐90187 Umeå Sweden
| |
Collapse
|
16
|
Coomber CE, Laserna V, Martin LT, Smith PD, Hailes HC, Porter MJ, Sheppard TD. Catalytic direct amidations in tert-butyl acetate using B(OCH 2CF 3) 3. Org Biomol Chem 2019; 17:6465-6469. [PMID: 31225568 PMCID: PMC6724682 DOI: 10.1039/c9ob01012b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/12/2019] [Indexed: 01/17/2023]
Abstract
Catalytic direct amidation reactions have been the focus of considerable recent research effort, due to the widespread use of amide formation processes in pharmaceutical synthesis. However, the vast majority of catalytic amidations are performed in non-polar solvents (aromatic hydrocarbons, ethers) which are typically undesirable from a sustainability perspective, and are often poor at solubilising polar carboxylic acid and amine substrates. As a consequence, most catalytic amidation protocols are unsuccessful when applied to polar and/or functionalised substrates of the kind commonly used in medicinal chemistry. In this paper we report a practical and useful catalytic direct amidation reaction using tert-butyl acetate as the reaction solvent. The use of an ester solvent offers improvements in terms of safety and sustainability, but also leads to an improved reaction scope with regard to polar substrates and less nucleophilic anilines, both of which are important components of amides used in medicinal chemistry. An amidation reaction was scaled up to 100 mmol and proceeded with excellent yield and efficiency, with a measured process mass intensity of 8.
Collapse
Affiliation(s)
- Charlotte E Coomber
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| | - Victor Laserna
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| | - Liam T Martin
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| | - Peter D Smith
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| | - Michael J Porter
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| | - Tom D Sheppard
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| |
Collapse
|
17
|
Xu X, Feng H, Li H, Huang L. Enol Ester Intermediate Induced Metal-Free Oxidative Coupling of Carboxylic Acids and Arylboronic Acids. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xianjun Xu
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Huiqiong Li
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| |
Collapse
|
18
|
Chen J, Jia J, Guo Z, Zhang J, Xie M. NH4I-promoted N-acylation of amines via the transamidation of DMF and DMA under metal-free conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Xu X, Huang L, Yin X, Van der Eycken EV, Feng H. Dual roles of ynoates: desymmetrization of dicarboxylic acids using trialkylamines as alkyl equivalents. Org Chem Front 2018. [DOI: 10.1039/c8qo00919h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel method has been developed for the desymmetrization of aromatic dicarboxylic acids by employing an esterification reaction/conjugate addition of a carboxyl group to ynoates, which can trigger a coupling reaction.
Collapse
Affiliation(s)
- Xianjun Xu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Xiaoying Yin
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Erik V. Van der Eycken
- Laboratory for Organic and Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
- KU Leuven
- Leuven 3001
- Belgium
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| |
Collapse
|