1
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Enzyme-like polyene cyclizations catalyzed by dynamic, self-assembled, supramolecular fluoro alcohol-amine clusters. Nat Commun 2023; 14:813. [PMID: 36781877 PMCID: PMC9925744 DOI: 10.1038/s41467-023-36157-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Terpene cyclases catalyze one of the most powerful transformations with respect to efficiency and selectivity in natural product (bio)synthesis. In such polyene cyclizations, structurally highly complex carbon scaffolds are built by the controlled ring closure of linear polyenes. Thereby, multiple C,C bonds and stereocenters are simultaneously created with high precision. Structural pre-organization of the substrate carbon chain inside the active center of the enzyme is responsible for the product- and stereoselectivity of this cyclization. Here, we show that in-situ formed fluorinated-alcohol-amine supramolecular clusters serve as artificial cyclases by triggering enzyme-like reactivity and selectivity by controlling substrate conformation in solution. Because of the dynamic nature of these supramolecular assemblies, a broad range of terpenes can be produced diastereoselectively. Mechanistic studies reveal a finely balanced interplay of fluorinated solvent, catalyst, and substrate as key to establishing nature's concept of a shape-selective polyene cyclization in organic synthesis.
Collapse
|
3
|
Kerim MD, Evanno L, Ferrié L. Stereodivergent Total Syntheses of (+)-Mycaperoxides C, D, G Methyl Ester and (-)-Mycaperoxide B. Chemistry 2023; 29:e202203004. [PMID: 36305658 PMCID: PMC10107902 DOI: 10.1002/chem.202203004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Mycaperoxides are natural endoperoxides isolated from different Mycale genus sponges, showing significant antiviral or antibacterial activities. We report herein the first total syntheses of representative congeners of this family from sclareol using a stereodivergent approach. Thus, an innovative oxidative ring expansion of cyclobutanol was used to bring the 1,2-dioxane subunit, and a Mukaiyama aldol reaction on peroxycarbenium species was utilized to install the propionic acid subunit. During the study toward (+)-mycaperoxide D methyl ester (2), the isolation of the eight possible diastereomers under their ethyl thioester form allowed to build a pertinent database for further NMR assignment studies. Thus, we completed the total syntheses of (+)-mycaperoxides D, C, G methyl ester, and (-)-mycaperoxide B in 11 to 15 steps, confirming their original assignment.
Collapse
Affiliation(s)
- Mansour D Kerim
- BioCIS, CNRS, Université Paris-Saclay, Bâtiment Henri-Moissan, 17 avenue des Sciences, 91400, Orsay, France
| | - Laurent Evanno
- BioCIS, CNRS, Université Paris-Saclay, Bâtiment Henri-Moissan, 17 avenue des Sciences, 91400, Orsay, France
| | - Laurent Ferrié
- BioCIS, CNRS, Université Paris-Saclay, Bâtiment Henri-Moissan, 17 avenue des Sciences, 91400, Orsay, France
| |
Collapse
|
4
|
Aguirre AL, Loud NL, Johnson KA, Weix DJ, Wang Y. ChemBead Enabled High-Throughput Cross-Electrophile Coupling Reveals a New Complementary Ligand. Chemistry 2021; 27:12981-12986. [PMID: 34233043 PMCID: PMC8554800 DOI: 10.1002/chem.202102347] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 12/15/2022]
Abstract
High-throughput experimentation (HTE) methods are central to modern medicinal chemistry. While many HTE approaches to C-N and Csp2 -Csp2 bonds are available, options for Csp2 -Csp3 bonds are limited. We report here how the adaptation of nickel-catalyzed cross-electrophile coupling of aryl bromides with alkyl halides to HTE is enabled by AbbVie ChemBeads technology. By using this approach, we were able to quickly map out the reactivity space at a global level with a challenging array of 3×222 micromolar reactions. The observed hit rate (56 %) is competitive with other often-used HTE reactions and the results are scalable. A key to this level of success was the finding that bipyridine 6-carboxamidine (BpyCam), a ligand that had not previously been shown to be optimal in any reaction, is as general as the best-known ligands with complementary reactivity. Such "cryptic" catalysts may be common and modern HTE methods should facilitate the process of finding these catalysts.
Collapse
Affiliation(s)
- Ana L Aguirre
- Advanced Chemistry Technologies Group, AbbVie, 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Nathan L Loud
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Keywan A Johnson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Daniel J Weix
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Ying Wang
- Advanced Chemistry Technologies Group, AbbVie, 1 N Waukegan Road, North Chicago, IL 60064, USA
| |
Collapse
|
5
|
Beutner GL, Simmons EM, Ayers S, Bemis CY, Goldfogel MJ, Joe CL, Marshall J, Wisniewski SR. A Process Chemistry Benchmark for sp 2-sp 3 Cross Couplings. J Org Chem 2021; 86:10380-10396. [PMID: 34255510 DOI: 10.1021/acs.joc.1c01073] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As sp2-sp3 disconnections gain acceptance in the medicinal chemist's toolbox, an increasing number of potential drug candidates containing this motif are moving into the pharmaceutical development pipeline. This raises a new set of questions and challenges around the novel, direct methodologies available for forging these bonds. These questions gain further importance in the context of process chemistry, where the focus is the development of scalable processes that enable the large-scale delivery of clinical supplies. In this paper, we describe our efforts to apply a wide variety of standard, photo-, and electrochemical sp2-sp3 cross-coupling methods to a pharmaceutically relevant intermediate and optimize each through a combination of high throughput and mechanistically guided experimentation. With data regarding the performance, benefits, and limitations of these novel methods, we evaluate them against a more traditional two-step palladium-catalyzed process. This work reveals trends and similarities between these sp2-sp3 bond-forming methods and suggests a path forward for further refinements.
Collapse
Affiliation(s)
- Gregory L Beutner
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Sloan Ayers
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Christopher Y Bemis
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Matthew J Goldfogel
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Candice L Joe
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jonathan Marshall
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
6
|
Jung HY, Chang S, Hong S. Strategic Approach to the Metamorphosis of γ-Lactones to NH γ-Lactams via Reductive Cleavage and C–H Amidation. Org Lett 2019; 21:7099-7103. [DOI: 10.1021/acs.orglett.9b02673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hoi-Yun Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
7
|
Menger M, Christmann M. Formal synthesis of actinoranone using a one-pot semipinacol rearrangement/Wittig reaction. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|