1
|
Lacker CR, Neumann M, Abrams DJ, Martinelli JR, Stahl SS, Yoon TP. Synthesis of C4-Acyl Glycosides by Cross-Ketonization: The Importance of Precise Temperature Control in Photochemistry. Chemistry 2025:e202501408. [PMID: 40239034 DOI: 10.1002/chem.202501408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
We describe herein a method for the synthesis of reversed C-acyl glycosides by direct cross-ketonization of linear carboxylic acids with carboxy sugars under metallaphotoredox conditions. This reaction proves to be highly sensitive to reaction temperature, with the reproducibility and yield of ketonization highly dependent upon precise temperature control. Analysis of the reaction mechanism suggests this sensitivity reflects the need to match the rate of Ni catalytic turnover with the rate of photocatalytic decarboxylation of the carboxy sugar. The insights gained from this study have important implications for the study of all metallaphotoredox reactions as well as other photoreactions that involve dual catalytic cycles.
Collapse
Affiliation(s)
- Caitlin R Lacker
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Physical Sciences, University of Central Missouri, Warrensburg, MO, 64093, USA
| | - Max Neumann
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Dylan J Abrams
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Joseph R Martinelli
- Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
2
|
Wu B, Xu C, Chen J, Chen G. Rhizoaspergillin A and Rhizoaspergillinol A, including a Unique Orsellinic Acid-Ribose-Pyridazinone- N-Oxide Hybrid, from the Mangrove Endophytic Fungus Aspergillus sp. A1E3. Mar Drugs 2023; 21:598. [PMID: 37999422 PMCID: PMC10671915 DOI: 10.3390/md21110598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Two new compounds, named rhizoaspergillin A (1) and rhizoaspergillinol A (2), were isolated from the mangrove endophytic fungus Aspergillus sp. A1E3, associated with the fruit of Rhizophora mucronata, together with averufanin (3). The planar structures and absolute configurations of rhizoaspergillinol A (2) and averufanin (3) were established by extensive NMR investigations and quantum-chemical electronic circular dichroism (ECD) calculations. Most notably, the constitution and absolute configuration of rhizoaspergillin A (1) were unambiguously determined by single-crystal X-ray diffraction analysis of its tri-pivaloyl derivative 4, conducted with Cu Kα radiation, whereas those of averufanin (3) were first clarified by quantum-chemical ECD calculations. Rhizoaspergillin A is the first orsellinic acid-ribose-pyridazinone-N-oxide hybrid containing a unique β-oxo-2,3-dihydropyridazine 1-oxide moiety, whereas rhizoaspergillinol A (2) and averufanin (3) are sterigmatocystin and anthraquinone derivatives, respectively. From the perspective of biosynthesis, rhizoaspergillin A (1) could be originated from the combined assembly of three building blocks, viz., orsellinic acid, β-D-ribofuranose, and L-glutamine. It is an unprecedented alkaloid-N-oxide involving biosynthetic pathways of polyketides, pentose, and amino acids. In addition, rhizoaspergillinol A (2) exhibited potent antiproliferative activity against four cancer cell lines. It could dose-dependently induce G2/M phase arrest in HepG2 cells.
Collapse
Affiliation(s)
- Binbin Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
| | - Chenglong Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China;
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China;
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
| |
Collapse
|
3
|
Jiang Y, Zhang Y, Lee BC, Koh MJ. Diversification of Glycosyl Compounds via Glycosyl Radicals. Angew Chem Int Ed Engl 2023; 62:e202305138. [PMID: 37278303 DOI: 10.1002/anie.202305138] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
Glycosyl radical functionalization is one of the central topics in synthetic carbohydrate chemistry. Recent advances in metal-catalyzed cross-coupling chemistry and metallaphotoredox catalysis provided powerful platforms for glycosyl radical diversification. In particular, the discovery of new glycosyl radical precursors in conjunction with these advanced reaction technologies have significantly expanded the space for glycosyl compound synthesis. In this Review, we highlight the most recent progress in this area starting from 2021, and the reports included will be categorized based on different reaction types for better clarity.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Yijun Zhang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Boon Chong Lee
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
4
|
Wei Y, Lam J, Diao T. Synthesis of C-acyl furanosides via the cross-coupling of glycosyl esters with carboxylic acids. Chem Sci 2021; 12:11414-11419. [PMID: 34667550 PMCID: PMC8447929 DOI: 10.1039/d1sc03596g] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
C-Acyl furanosides are versatile synthetic precursors to a variety of natural products, nucleoside analogues, and pharmaceutical molecules. This report addresses the unmet challenge in preparing C-acyl furanosides by developing a cross-coupling reaction between glycosyl esters and carboxylic acids. A key step is the photoredox activation of the glycosyl ester, which promotes the homolysis of the strong anomeric C–O bond through CO2 evolution to afford glycosyl radicals. This method embraces a large scope of furanoses, pyranoses, and carboxylic acids, and is readily applicable to the synthesis of a thymidine analogue and diplobifuranylone B, as well as the late-stage modification of (+)-sclareolide. The convenient preparation of the redox active glycosyl ester from native sugars and the compatibility with common furanoses exemplifies the potential of this method in medicinal chemistry. A cross-coupling of glycosyl esters with carboxylic acids to prepare C-acyl furanosides and pyranosides. The reaction proceeds through photoredox activation of the glycosyl ester to afford glycosyl radicals.![]()
Collapse
Affiliation(s)
- Yongliang Wei
- Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| | - Jenny Lam
- Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| | - Tianning Diao
- Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
5
|
Beck KM, Krogh MB, Hornum M, Ludford PT, Tor Y, Nielsen P. Double-headed nucleotides as xeno nucleic acids: information storage and polymerase recognition. Org Biomol Chem 2020; 18:7213-7223. [PMID: 32909574 PMCID: PMC7517788 DOI: 10.1039/d0ob01426e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Xeno nucleic acids (XNAs) are artificial genetic systems based on sugar-modified nucleotides. Herein, we investigate double-headed nucleotides as a new XNA. A new monomer, AT, is presented, and together with previous double-headed nucleotide monomers, new nucleic acid motifs consisting of up to five consecutive A·T base pairs have been obtained. Sections composed entirely of double-headed nucleotides are well-tolerated within a DNA duplex and can condense the genetic information. For instance, a 13-mer duplex is condensed to an 11-mer modified duplex containing four double-headed nucleotides while simultaneously improving duplex thermal stability with +14.0 °C. Also, the transfer of information from double-headed to natural nucleotides by DNA polymerases has been examined. The first double-headed nucleoside triphosphate was prepared but could not be recognized and incorporated by the tested DNA polymerases. On the other hand, it proved possible for Therminator DNA polymerase to transfer the information of a double-headed nucleotide in a template sequence to natural DNA under controlled conditions.
Collapse
Affiliation(s)
- Kasper M Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Marie B Krogh
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Paul T Ludford
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| |
Collapse
|