1
|
Zhou P, Ding L, Liu Y, Song H, Wang Q. Iron-Catalyzed Electrophotochemical α-Functionalization of a Silylcyclobutanol. Org Lett 2024; 26:7094-7099. [PMID: 39150853 DOI: 10.1021/acs.orglett.4c02279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Four-membered ring structure is important in organic chemistry, and selective cleavage and functionalization of these strained rings are of great interest. However, direct α-functionalization of cyclobutanols is rarely reported because of the high O-H bond dissociation energy and the occurrence of β-scission of C-C bonds in these alcohols. Recently, transition-metal catalysis has facilitated alkoxy radical generation. Herein, we report a method for electrophotochemical α-functionalization of a silylcyclobutanol via visible-light-induced LMCT reactions of M-alkoxy complexes. Introduction of the silyl group into the cyclobutanol structure favored fast [1,2]-silyl transfer over ring opening, thus allowing the generation of α-functionalized products.
Collapse
Affiliation(s)
- Pan Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Ling Ding
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Tu JL, Huang B. Titanium in photocatalytic organic transformations: current applications and future developments. Org Biomol Chem 2024; 22:6650-6664. [PMID: 39118484 DOI: 10.1039/d4ob01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Titanium, as an important transition metal, has garnered extensive attention in both industry and academia due to its excellent mechanical properties, corrosion resistance, and unique reactivity in organic synthesis. In the field of organic photocatalysis, titanium-based compounds such as titanium dioxide (TiO2), titanocenes (Cp2TiCl2, CpTiCl3), titanium tetrachloride (TiCl4), tetrakis(isopropoxy)titanium (Ti(OiPr)4), and chiral titanium complexes have demonstrated distinct reactivity and selectivity. This review focuses on the roles of these titanium compounds in photocatalytic organic reactions, and highlights the reaction pathways such as photo-induced single-electron transfer (SET) and ligand-to-metal charge transfer (LMCT). By systematically surveying the latest advancements in titanium-involved organic photocatalysis, this review aims to provide references for further research and technological innovation within this fast-developing field.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Binbin Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
| |
Collapse
|
3
|
Carli B, Salaverri N, Martinez-Fernandez L, Goicuría M, Alemán J, Marzo L. Proton-Coupled Electron Transfer Ring Opening of Cycloalkanols Followed by a Giese Radical Addition Enabled by an Electron Donor-Acceptor Complex. Org Lett 2024; 26:4542-4547. [PMID: 38775727 PMCID: PMC11148845 DOI: 10.1021/acs.orglett.4c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Herein, we describe the formation of an electron donor-acceptor (EDA) complex between electron-rich cycloalkanols and electron-deficient alkenes that triggers the proton-coupled electron transfer ring opening of strained and unstrained cycloalkanols without the need for an external photocatalyst. This activation generates a remote alkyl radical that undergoes a Giese reaction with the Michael acceptor in an efficient manner. Mechanistic investigations corroborate both the formation of the EDA complex and the consecutive Giese reaction.
Collapse
Affiliation(s)
- Benedetta Carli
- Organic Chemistry Department
(Módulo 1), Universidad Autónoma
de Madrid, Calle Francisco
Tomás y Valiente 7, 28049 Madrid, Spain
| | - Noelia Salaverri
- Organic Chemistry Department
(Módulo 1), Universidad Autónoma
de Madrid, Calle Francisco
Tomás y Valiente 7, 28049 Madrid, Spain
| | | | - Marta Goicuría
- Organic Chemistry Department
(Módulo 1), Universidad Autónoma
de Madrid, Calle Francisco
Tomás y Valiente 7, 28049 Madrid, Spain
| | | | | |
Collapse
|
4
|
Chowdhury R, Dubey AK, Ghosh R. Synthesis of Functionalized Organosilicon Compounds/Distal Ketones via Ring-Opening Giese Addition of Cycloalkanols under Organophotocatalytic Conditions. J Org Chem 2024; 89:7187-7200. [PMID: 38669476 DOI: 10.1021/acs.joc.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Visible-light-induced organophotocatalyzed ring-opening followed by remote Giese addition of tertiary cycloalkanols with β-silylmethylene malonates has been developed under mild reaction conditions for the synthesis of organosilicon compounds, bearing a ketone group distally substituted with a silyl group with an additional dialkyl malonate functional handle in moderate to good yields (34-72%). The protocol also worked well with diverse Michael acceptors, such as alkylidene/benzylidene malonates, trifluoro methylidene malonate, benzylidene malononitrile, α-cyano-enone, and α-cyano vinyl sulfone, and delivered desired valuable distally functionalized ketones. To showcase the potential of the method, various synthetic transformations of the obtained product were also demonstrated.
Collapse
Affiliation(s)
- Raghunath Chowdhury
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Akhil K Dubey
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
5
|
He K, Mei Y, Jin N, Liu Y, Pan F. Visible light-promoted difluoromethylthiolation of cycloalkanols by C-C bond cleavage. Org Biomol Chem 2024; 22:1782-1787. [PMID: 38329275 DOI: 10.1039/d3ob02078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A mild and general methodology for the difluoromethylthiolation of cycloalkanols has been developed by employing N-difluoromethylthiophthalimide as the SCF2H radical source, in combination with an acridinium-derived organo-photosensitizer, under redox-neutral conditions. This reaction protocol demonstrates high efficiency, scalability, and mild reaction conditions, thus presenting a green approach for the rapid synthesis of distal difluoromethylthiolated alkyl ketones that are challenging to be synthesized through alternative means.
Collapse
Affiliation(s)
- Kehan He
- School of Science, Xichang University, Xichang 615000, P. R. China.
| | - Yan Mei
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Na Jin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Yutao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| |
Collapse
|
6
|
He Z, Wang Z, Gao Z, Qian H, Ding W, Jin H, Liu Y, Zhou B. Aryl boronic acid-controlled divergent ring-contraction and ring-opening/isomerization reaction of tert-cyclobutanols enabled by nickel catalysis. Org Biomol Chem 2023; 21:6493-6497. [PMID: 37529886 DOI: 10.1039/d3ob00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
In this work, we wish to present a nickel-catalyzed divergent ring-contraction and ring-opening/isomerization reaction of tert-cyclobutanols. The key to control these two different reaction pathways is to choose appropriate boronic acid, where the use of phenylboronic acid and pyrimidin-5-ylboronic acid enables a ring-contraction and ring-opening reaction/isomerization, respectively. Both cyclopropyl aryl methanones and 1-aryl butan-1-ones could be selectively obtained.
Collapse
Affiliation(s)
- Zhichang He
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhengwen Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhao Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongwei Qian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Wangqiannan Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongwei Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yunkui Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
7
|
Zeng W, Zhang X, Zhang Y, Xiao S, Tang Y, Xie P, Loh TP. Organophotoredox-Catalyzed Intermolecular Formal Grob Fragmentation of Cyclic Alcohols with Activated Allylic Acetates. Org Lett 2023; 25:5869-5874. [PMID: 37515785 DOI: 10.1021/acs.orglett.3c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
We have developed an efficient method that employs organophotoredox-catalyzed relay Grob fragmentation to facilitate the smooth ring-opening allylation of cyclic alcohols in an environmentally friendly manner. This protocol directly incorporates a wide spectrum of cyclic alcohols and activated allylic acetates into the cross-coupling reaction, eliminating the need for metal catalysts. The process yields a variety of distally unsaturated ketones with good to excellent outcomes and stereoselectivity, while acetic acid is the sole byproduct.
Collapse
Affiliation(s)
- Wubing Zeng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiaoyu Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yinlei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shiji Xiao
- Jiangsu BioGuide Laboratory Co., Ltd, Wujin Economic Development Zone, Changzhou 213000, Jiangsu, China
| | - Yongming Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
8
|
Ge Y, Shao Y, Wu S, Liu P, Li J, Qin H, Zhang Y, Xue XS, Chen Y. Distal Amidoketone Synthesis Enabled by Dimethyl Benziodoxoles via Dual Copper/Photoredox Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Yuanyuan Ge
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yingbo Shao
- State Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shuang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, P. R. China
| | - Pan Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
- Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Junzhao Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Hanzhang Qin
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| | - Yanxia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiao-song Xue
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
- State Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, P. R. China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
9
|
Organophotoredox-catalyzed ring-opening gem-difluoroallylation of nonstrained cycloalkanols. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Salaverri N, Carli B, Gratal PB, Marzo L, Alemán J. Remote Giese Radical Addition by Photocatalytic Ring Opening of Activated Cycloalkanols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Noelia Salaverri
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Benedetta Carli
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Patricia B. Gratal
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Leyre Marzo
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Madrid 28049 Spain
| | - José Alemán
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Madrid 28049 Spain
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA) Universidad Autónoma de Madrid Madrid 28049 Spain
| |
Collapse
|
11
|
Wang X, Li Y, Wu X. Photoredox/Cobalt Dual Catalysis Enabled Regiospecific Synthesis of Distally Unsaturated Ketones with Hydrogen Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaochuang Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yi Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
12
|
Wong THF, Ma D, Di Sanza R, Melchiorre P. Photoredox Organocatalysis for the Enantioselective Synthesis of 1,7-Dicarbonyl Compounds. Org Lett 2022; 24:1695-1699. [PMID: 35199526 DOI: 10.1021/acs.orglett.2c00326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe an asymmetric organocatalytic method to synthesize 1,7-dicarbonyl compounds containing a β-stereocenter. The chemistry relies on the formation of γ-keto radicals, generated upon oxidative ring opening of cyclobutanols mastered by an organic photoredox catalyst. These nonstabilized primary radicals are stereoselectively intercepted by an iminium ion intermediate, formed upon activation of aliphatic and aromatic enals by a chiral secondary amine catalyst. This organocatalytic photoredox method served to prepare scaffolds found in natural products and drug molecules.
Collapse
Affiliation(s)
- Thomas Hin-Fung Wong
- ICIQ - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, 43007 Tarragona, Spain
| | - Dengke Ma
- ICIQ - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Riccardo Di Sanza
- ICIQ - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Paolo Melchiorre
- ICIQ - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,ICREA - Catalan Institution for Research and Advanced Studies, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Ferrié L, Jamey N. From Ring-Expansion to Ring-Contraction: Synthesis of γ-Lactones from Cyclobutanols and Relative Stability of Five- and Six-Membered Endoperoxides toward Organic Bases. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1765-1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractCyclobutanols undergo ring expansion with molecular oxygen in the presence of Co(acac)2 to afford 1,2-dioxane-hemiperoxyketals. In the course of acylation, we observed that endoperoxides rearranged into γ-lactone in the presence of triethylamine. Thus, a generalization of this ring contraction through a Kornblum–DeLaMare rearrangement is here reported. Application of this transformation to monosubstituted 1,2-dioxane derivatives also led to 1,4-ketoaldehydes, in proportions depending on the nature of the substituent. These same conditions applied to five-membered dioxolane analogues led to fragmentation instead, through a retro-aldol type process. This study emphasizes the difference of stability of 1,2-dioxane and 1,2-dioxolane against organic bases, 1,2-dioxolanes having proved to be particularly reactive whereas 1,2-dioxanes showed a relative tolerance under these conditions.
Collapse
|
14
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Wang M, Tao J, Yang F, Xin H, Gao S, Guo L, Gao P. Iron‐Catalyzed Ring‐Opening/Allylation of Cycloalkyl Hydroperoxides with Allylic Sulfones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming‐Hua Wang
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Jing‐Qi Tao
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Fan Yang
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Hong Xin
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Shu‐Xin Gao
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Li‐Na Guo
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Pin Gao
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| |
Collapse
|
16
|
Tian J, Sun Z, Li W, Wang D, Zhou L. Visible-light-promoted defluorinative ring-opening gem-difluoroallylation of cycloalkanols using 1-trifluoromethyl alkenes. NEW J CHEM 2022. [DOI: 10.1039/d2nj00599a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A photocatalytic redox-neutral defluorinative ring-opening coupling of cycloalkanols with α-trifluoromethyl alkenes for the synthesis of gem-difluoroalkenes bearing a distal carbonyl group was developed.
Collapse
Affiliation(s)
- Jiabao Tian
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Zhengchang Sun
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Weiyu Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Duozhi Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Lei Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
17
|
Zou JP, Li CK, Shoberu A. Silver-Catalyzed Radical Ring-Opening of Cycloalkanols for the Synthesis of distal acylphosphine oxides. Org Chem Front 2022. [DOI: 10.1039/d2qo00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel silver-catalyzed ring-opening approach for the regioselective synthesis of distal acylphosphine oxides is described. A variety of distal acylphosphine oxides were prepared from the reaction of tertiary cycloalkanols (4...
Collapse
|
18
|
Li XS, Kong X, Wang CT, Niu ZJ, Wei WX, Liu HC, Zhang Z, Li Y, Liang YM. Lewis-Acid-Catalyzed Tandem Cyclization by Ring Expansion of Tertiary Cycloalkanols with Propargyl Alcohols. Org Lett 2021; 23:9457-9462. [PMID: 34859669 DOI: 10.1021/acs.orglett.1c03621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new method for the efficient synthesis of hexahydro-1H-fluorene and octahydrobenzo[a]azulene derivatives through a ring-expansion strategy is reported. With an appropriate combination of thulium(III) trifluoromethanesulfonate and 13X molecular sieves, a range of unsaturated polycyclic compounds were obtained in good yields. Mechanism studies reveal that the reaction is more likely to undergo Meyer-Schuster rearrangement, ring expansion, and Friedel-Crafts-type pathways, which provide a conceptually different strategy for the ring opening of tertiary cycloalkanols.
Collapse
Affiliation(s)
- Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Bai X, Qian L, Zhang HH, Yu S. Enantioselective Radical S N2-Type Alkylation of Morita-Baylis-Hillman Adducts Using Dual Photoredox/Palladium Catalysis. Org Lett 2021; 23:8322-8326. [PMID: 34672603 DOI: 10.1021/acs.orglett.1c03064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An enantioselective radical alkylation of 4-alkyl-1,4-dihydropyridines with Morita-Baylis-Hillman (MBH) adducts has been reported. The SN2-type products are predominant. This reaction is enabled by dual photoredox/palladium catalysis. The alkylation products are provided in good yields with good regio- and enantioselectivity. The use of Ding's spiroketal-based bis(phosphine) (SKP) ligand is crucial to achieving satisfactory regio- and enantioselectivity. The resultant α,β-unsaturated ester can be easily reduced to a synthetically useful chiral allyl alcohol.
Collapse
Affiliation(s)
- Xiangbin Bai
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Linlin Qian
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Abstract
An iron-catalyzed deconstruction/hydrogenation reaction of alcohols through C-C bond cleavage is developed through photocatalysis, to produce ketones or aldehydes as the products. Tertiary, secondary, and primary alcohols bearing a wide range of substituents are suitable substrates. Complex natural alcohols can also perform the transformation selectively. A investigation of the mechanism reveals a procedure that involves chlorine radical improved O-H homolysis, with the assistance of 2,4,6-collidine.
Collapse
Affiliation(s)
- Wei Liu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Qiang Wu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Miao Wang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Yahao Huang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Peng Hu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
21
|
Chang L, An Q, Duan L, Feng K, Zuo Z. Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis. Chem Rev 2021; 122:2429-2486. [PMID: 34613698 DOI: 10.1021/acs.chemrev.1c00256] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alkoxy radicals are highly reactive species that have long been recognized as versatile intermediates in organic synthesis. However, their development has long been impeded due to a lack of convenient methods for their generation. Thanks to advances in photoredox catalysis, enabling facile access to alkoxy radicals from bench-stable precursors and free alcohols under mild conditions, research interest in this field has been renewed. This review comprehensively summarizes the recent progress in alkoxy radical-mediated transformations under visible light irradiation. Elementary steps for alkoxy radical generation from either radical precursors or free alcohols are central to reaction development; thus, each section is categorized and discussed accordingly. Throughout this review, we have focused on the different mechanisms of alkoxy radical generation as well as their impact on synthetic utilizations. Notably, the catalytic generation of alkoxy radicals from abundant alcohols is still in the early stage, providing intriguing opportunities to exploit alkoxy radicals for diverse synthetic paradigms.
Collapse
Affiliation(s)
- Liang Chang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China.,School of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Qing An
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| |
Collapse
|
22
|
Hu Y, Luo H, Tu X, Xue H, Jin H, Liu Y, Zhou B. Selective cine-arylation of tert-cyclobutanols with indoles enabled by nickel catalysis. Chem Commun (Camb) 2021; 57:4686-4689. [PMID: 33977975 DOI: 10.1039/d1cc01233a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In previous literature, tert-cyclobutanols are widely studied for C-C bond activation exclusively leading to the formation of ordinary γ-substituted ketones. Herein, we first report a nickel-catalyzed cine-arylation of tert-cyclobutanols with indoles to access β-aryl ketones with an unusual site-selectivity at the C3-position of tert-cyclobutanols. The reaction features earth-abundant nickel catalysis, excellent regioselectivity, high atom-economy, and broad substrate scope.
Collapse
Affiliation(s)
- Yuanyuan Hu
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Honggen Luo
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiangtu Tu
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Han Xue
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongwei Jin
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yunkui Liu
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Bingwei Zhou
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
23
|
López MM, Jamey N, Pinet A, Figadère B, Ferrié L. Oxidative Ring Expansion of Cyclobutanols: Access to Functionalized 1,2-Dioxanes. Org Lett 2021; 23:1626-1631. [DOI: 10.1021/acs.orglett.1c00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Nicolas Jamey
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry 92290, France
| | - Alexis Pinet
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry 92290, France
| | - Bruno Figadère
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry 92290, France
| | - Laurent Ferrié
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry 92290, France
| |
Collapse
|
24
|
Wang Z, Hu Y, Jin H, Liu Y, Zhou B. Nickel-Catalyzed Arylation/Alkenylation of tert-Cyclobutanols with Aryl/Alkenyl Triflates via a C -C Bond Cleavage. J Org Chem 2021; 86:466-474. [PMID: 33252235 DOI: 10.1021/acs.joc.0c02209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we first present a nickel-catalyzed arylation and alkenylation of tert-cyclobutanols with aryl/alkenyl triflates via a C-C bond cleavage. An array of γ-substituted ketones was obtained in moderate-to-good yields, thus featuring earth-abundant nickel catalysis, broad substrate scope, and simple reaction conditions. Preliminary mechanistic experiments indicated that β-carbon elimination pathways might be involved in the catalytic cycle.
Collapse
Affiliation(s)
- Zhen Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunkui Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
25
|
|
26
|
Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chem Soc Rev 2020; 50:766-897. [PMID: 33350402 DOI: 10.1039/d0cs00493f] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The late stage functionalization (LSF) of complex biorelevant compounds is a powerful tool to speed up the identification of structure-activity relationships (SARs) and to optimize ADME profiles. To this end, visible-light photocatalysis offers unique opportunities to achieve smooth and clean functionalization of drugs by unlocking site-specific reactivities under generally mild reaction conditions. This review offers a critical assessment of current literature, pointing out the recent developments in the field while emphasizing the expected future progress and potential applications. Along with paragraphs discussing the visible-light photocatalytic synthetic protocols so far available for LSF of drugs and drug candidates, useful and readily accessible synoptic tables of such transformations, divided by functional groups, will be provided, thus enabling a useful, fast, and easy reference to them.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
An Z, Liu Y, Sun Y, Yan R. TFA-Catalyzed [3+2] Spiroannulation of Cyclobutanols: A Route to Spiro[cyclobuta[a]indene-7,1'-cyclobutane] Skeletons. Chem Asian J 2020; 15:3812-3815. [PMID: 32997399 DOI: 10.1002/asia.202001048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/27/2020] [Indexed: 12/15/2022]
Abstract
A straightforward method for the synthesis of spiro[cyclobuta[a]indene-7,1'-cyclobutane] derivatives from cyclobutanols has been developed via one-pot [3+2] spiroannulation. A series of new spiro[cyclobuta[a]indene-7,1'-cyclobutane] derivatives are facilely synthesized in good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Zhenyu An
- State Key Laboratory of Applied Organic Chemistry, Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yafeng Liu
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750000, P. R. China
| | - Yanwei Sun
- Research Institute of Exploration & Development, Tuha Oilfield Company, Xinjiang, 830000, P. R. China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
28
|
Tsui E, Wang H, Knowles RR. Catalytic generation of alkoxy radicals from unfunctionalized alcohols. Chem Sci 2020; 11:11124-11141. [PMID: 33384861 PMCID: PMC7747465 DOI: 10.1039/d0sc04542j] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Alkoxy radicals have long been recognized as powerful synthetic intermediates with well-established reactivity patterns. Due to the high bond dissociation free energy of aliphatic alcohol O-H bonds, these radicals are difficult to access through direct homolysis, and conventional methods have instead relied on activation of O-functionalized precursors. Over the past decade, however, numerous catalytic methods for the direct generation of alkoxy radicals from simple alcohol starting materials have emerged and created opportunities for the development of new transformations. This minireview discusses recent advances in catalytic alkoxy radical generation, with particular emphasis on progress toward the direct activation of unfunctionalized alcohols enabled by transition metal and photoredox catalysis.
Collapse
Affiliation(s)
- Elaine Tsui
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA .
| | - Huaiju Wang
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA .
| | - Robert R Knowles
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA .
| |
Collapse
|
29
|
Abstract
This article reviews synthetic transformations involving cleavage of a carbon-carbon bond of a four-membered ring, with a particular focus on the examples reported during the period from 2011 to the end of 2019. Most significant is the progress of catalytic reactions involving oxidative addition of carbon-carbon bonds onto transition metals or β-carbon elimination of transition metal alkoxides. When they are looked at from synthetic perspectives, they offer unique and efficient methods to build complex natural products and structures that are difficult to construct by conventional methods. On the other hand, β-scission of radical intermediates has also attracted increasing attention as an alternative elementary step to cleave carbon-carbon bonds. Its site-selectivity is often complementary to that of transition metal-catalyzed reactions. In addition, Lewis acid-mediated and thermally induced ring-opening of cyclobutanone derivatives has garnered renewed attention. On the whole, these examples demonstrate unique synthetic potentials of structurally strained four-membered ring compounds for the construction of organic skeletons.
Collapse
Affiliation(s)
- Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
30
|
Shu C, Madhavachary R, Noble A, Aggarwal VK. Photoinduced Fragmentation Borylation of Cyclic Alcohols and Hemiacetals. Org Lett 2020; 22:7213-7218. [PMID: 32903015 DOI: 10.1021/acs.orglett.0c02513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Shu
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | | | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
31
|
Xin H, Duan X, Liu L, Guo L. Metal‐Free, Visible‐Light‐Induced Selective C−C Bond Cleavage of Cycloalkanones with Molecular Oxygen. Chemistry 2020; 26:11690-11694. [DOI: 10.1002/chem.202001032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Hong Xin
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of, Condensed Matter Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Xin‐Hua Duan
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of, Condensed Matter Xi'an Jiaotong University Xi'an 710049 P. R. China
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Le Liu
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of, Condensed Matter Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Li‐Na Guo
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of, Condensed Matter Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
32
|
Yu XY, Chen JR, Xiao WJ. Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chem Rev 2020; 121:506-561. [DOI: 10.1021/acs.chemrev.0c00030] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao-Ye Yu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
33
|
Zeng X, Wang X, Zhang Y, Zhu L, Zhao Y. A silver-catalyzed radical ring-opening reaction of cyclopropanols with sulfonyl oxime ethers. Org Biomol Chem 2020; 18:3734-3739. [PMID: 32364186 DOI: 10.1039/d0ob00055h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A silver-catalyzed ring-opening reaction of cyclopropanols with sulfonyl oxime ethers has been developed. The protocol was conducted under mild reaction conditions to provide a series of γ-keto oxime ethers with moderate to good yields. The reaction proceeded in a stereoselective manner for CF3-containing oxime ethers to provide a single stereoisomer, while an inseparable E and Z mixture was obtained for CN-containing oxime ethers. Mechanistic studies indicate that the reaction proceeded via a radical mechanism.
Collapse
Affiliation(s)
- Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xin Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yanan Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Li Zhu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| |
Collapse
|
34
|
Chen L, Yang JC, Xu P, Zhang JJ, Duan XH, Guo L. Nickel-catalyzed Suzuki Coupling of Cycloalkyl Silyl Peroxides with Boronic Acids. J Org Chem 2020; 85:7515-7525. [DOI: 10.1021/acs.joc.0c00250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lei Chen
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jun-Cheng Yang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Pengfei Xu
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jun-Jie Zhang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Xin-Hua Duan
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li−Na Guo
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
35
|
Ji T, Chen XY, Huang L, Rueping M. Remote Trifluoromethylthiolation Enabled by Organophotocatalytic C-C Bond Cleavage. Org Lett 2020; 22:2579-2583. [PMID: 32176516 DOI: 10.1021/acs.orglett.0c00493] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first metal-free ring opening/trifluoromethylthiolation of cycloalkanols for the formation of remote C(sp3)-SCF3 bonds has been developed. A variety of trifluoromethylthiolated carbonyl compounds that are otherwise difficult to achieve were prepared in good yields under mild reaction conditions. The reaction is assumed to proceed via C-C bond cleavage of the alkoxyl radical species generated via a photoredox-enabled intramolecular proton-coupled electron transfer process, followed by trifluoromethylthiolation of the resulting C-centered radical with the N-(trifluoromethylthio)phthalimide reagent.
Collapse
Affiliation(s)
- Tengfei Ji
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Xiang-Yu Chen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Long Huang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.,KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
36
|
Ritu, Sharma C, Kumar S, Jain N. Singlet oxygen mediated dual C–C and C–N bond cleavage in visible light. Org Biomol Chem 2020; 18:2921-2928. [DOI: 10.1039/d0ob00563k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tandem cleavage of carbon–carbon and carbon–nitrogen bonds in imidazo[1,2-a]pyridines and imidazo[1,2-a]quinolines is reported in the presence of eosin Y and visible light.
Collapse
Affiliation(s)
- Ritu
- Department of Chemistry
- Indian Institute of Technology
- New Delhi-110016
- India
| | - Charu Sharma
- Department of Chemistry
- Indian Institute of Technology
- New Delhi-110016
- India
| | - Sharvan Kumar
- Department of Chemistry
- Indian Institute of Technology
- New Delhi-110016
- India
| | - Nidhi Jain
- Department of Chemistry
- Indian Institute of Technology
- New Delhi-110016
- India
| |
Collapse
|
37
|
Natho P, Allen LAT, White AJP, Parsons PJ. Transition-Metal-Free Access to Heteroaromatic-Fused 4-Tetralones by the Oxidative Ring Expansion of the Cyclobutanol Moiety. J Org Chem 2019; 84:9611-9626. [PMID: 31288517 DOI: 10.1021/acs.joc.9b01290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Advances in the transition-metal-free cyclobutanol ring expansion to 4-tetralones under N-bromosuccinimide mediation are described. We have expanded the scope of this ring expansion methodology and investigated the effect substituents on the aromatic ring, and the cyclobutanol moiety, have on the outcome of the reaction. Limitations with certain substituents on the cyclobutanol moiety are also described. Further experimental evidence to support our mechanistic understanding is disclosed, and we now preclude the suggested involvement of a primary radical for this transformation.
Collapse
Affiliation(s)
- Philipp Natho
- Department of Chemistry, Molecular Sciences Research Hub , Imperial College London , W12 0BZ , London , U.K
| | - Lewis A T Allen
- Department of Chemistry, Molecular Sciences Research Hub , Imperial College London , W12 0BZ , London , U.K
| | - Andrew J P White
- Department of Chemistry, Molecular Sciences Research Hub , Imperial College London , W12 0BZ , London , U.K
| | - Philip J Parsons
- Department of Chemistry, Molecular Sciences Research Hub , Imperial College London , W12 0BZ , London , U.K
| |
Collapse
|
38
|
Morcillo SP. Radical‐Promoted C−C Bond Cleavage: A Deconstructive Approach for Selective Functionalization. Angew Chem Int Ed Engl 2019; 58:14044-14054. [DOI: 10.1002/anie.201905218] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sara P. Morcillo
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Granada Avda. Fuentenueva, s/n 18071 Granada Spain
| |
Collapse
|
39
|
Morcillo SP. Radical‐Promoted C−C Bond Cleavage: A Deconstructive Approach for Selective Functionalization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905218] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sara P. Morcillo
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Granada Avda. Fuentenueva, s/n 18071 Granada Spain
| |
Collapse
|
40
|
Sivaguru P, Wang Z, Zanoni G, Bi X. Cleavage of carbon–carbon bonds by radical reactions. Chem Soc Rev 2019; 48:2615-2656. [DOI: 10.1039/c8cs00386f] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review provides insights into the in situ generated radicals triggered carbon–carbon bond cleavage reactions.
Collapse
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|