1
|
Wani AA, Bhujbal SM, Sherpa D, Kathuria D, Chourasiya SS, Sahoo SC, Bharatam PV. An NNN Pd(II) pincer complex with 1,1-diaminoazine: a versatile catalyst for acceptorless dehydrogenative coupling reactions. Org Biomol Chem 2025; 23:343-351. [PMID: 39534965 DOI: 10.1039/d4ob01576b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An azine-based, non-palindromic, neutral NNN-pincer ligand was synthesised in a single step with an yield of 85%. The palladation of the ligand, using Pd(OAc)2, was performed in acetonitrile at room temperature to obtain the pincer complex in 88% yield through a simple, cost-effective, and straightforward synthetic procedure. The structure of the complex was confirmed by 1H NMR, 13C NMR, FT-IR, and mass spectrometry. The variable temperature NMR spectra revealed the stability of the complex even at higher temperatures, a characteristic feature of pincer complexes. The generated complex proved to be a versatile catalyst for Acceptorless Dehydrogenative Coupling (ADC) to synthesize N-heterocycles: (i) 1,2-disubstituted benzimidazoles, (ii) 2-phenylquinolines, (iii) 2-phenylquinoxalines and (iv) 2-phenylquinazolinones. Since the side products of the reactions are H2O and H2 gas, the catalysis can be considered as a green catalytic process. Quantum chemical calculations indicated the participation of a possible nitrene-imide conversion process during the Metal-Ligand Cooperation (MLC) in ADC reactions.
Collapse
Affiliation(s)
- Aabid A Wani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Punjab, India
| | - Shivkanya Madhavrao Bhujbal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Deekey Sherpa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Deepika Kathuria
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India
| | - Sumit S Chourasiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Chandigarh, Punjab 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| |
Collapse
|
2
|
Sivakumar G, Suresh AK, Padhy SR, Balaraman E. Double dehydrogenative coupling of amino alcohols with primary alcohols under Mn(I) catalysis. Chem Commun (Camb) 2024; 60:13606-13609. [PMID: 39484689 DOI: 10.1039/d4cc03595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Herein, we unveil a method for synthesizing substituted pyrrole and pyrazine compounds via a double dehydrogenative coupling of amino alcohols with primary alcohols, facilitated by Mn(I)-PNP catalysis, which uniquely enables the simultaneous formation of C-C and C-N bonds.
Collapse
Affiliation(s)
- Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Abhijith Karattil Suresh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Smruti Rekha Padhy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| |
Collapse
|
3
|
Sekar PK, Rengan R, Sundarraman B. NNO Pincer-Supported Pd(II)-Catalyzed Reductive N-Alkylation of Challenging Nitroarenes with Alcohols via Borrowing Hydrogen Strategy. J Org Chem 2024; 89:11161-11172. [PMID: 39081033 DOI: 10.1021/acs.joc.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A sustainable catalytic synthesis of selective monoalkylated amines from nitroarenes and alcohols by new palladium(II)-NNO pincer-type complexes has been described. Herein, a series of Pd(II) complexes [Pd(NNO)PPh3] (1-3) are synthesized and characterized by analytical and spectroscopic (IR, NMR, and HR-MS) methods. The solid-state molecular structures of two complexes are established by X-ray single-crystal diffraction. Furthermore, the catalytic N-alkylation of challenging nitroarenes with primary and secondary alcohols has been performed by the well-defined palladium(II) complexes via borrowing hydrogen strategy. The current protocol offers a wide range of monoalkylated amines (26 examples) with a maximum yield of 87% utilizing 1 mol % of catalyst loading. Gratifyingly, the catalytic system works well under mild reaction conditions and atom economy with water is the only byproduct. Furthermore, control experiments confirm the formation of probable intermediates (aniline, aldehyde, and imine), and deuterium labeling authenticates the borrowing hydrogen mechanism. A gram-scale synthesis of an alkylated product clearly demonstrates the synthetic efficacy of the present catalytic methodology.
Collapse
Affiliation(s)
- Pranesh Kavin Sekar
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu 620 024, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu 620 024, India
| | - Balaji Sundarraman
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
4
|
Sahiba N, Teli P, Meena P, Agarwal S. Exploring the Synthetic and Antioxidant Potential of 1,2-Disubstituted Benzimidazoles Using [Et 3NH][HSO 4] Ionic Liquid Catalyst. Chem Biodivers 2024; 21:e202301159. [PMID: 37718514 DOI: 10.1002/cbdv.202301159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/19/2023]
Abstract
An [Et3NH][HSO4] ionic-liquid catalyzed, intermolecular C-N bond formation for 1,2-disubstituted benzimidazole synthesis was achieved by the reaction of OPD and substituted aldehydes at ambient reaction conditions. Operational simplicity, use of easily available substrate and reagents, good yields (74-95 %) in short reaction time (4-18 min), simple work-up, and column chromatographic free synthesis are the remarkable features of this new protocol. The applicability of [Et3NH][HSO4] ionic-liquid as a green and inexpensive catalyst with good recyclability and compatibility with a broad range of functional group having heteroatom, electron-withdrawing, and electron-releasing groups manifested the sustainability, eco-friendliness, and efficiency of the present methodology. Moreover, the antioxidant studies of the synthesized compounds using DPPH and ABTS assays were appealing and several synthesized compounds showed significant antioxidant activity.
Collapse
Affiliation(s)
- Nusrat Sahiba
- Synthetic Organic Chemistry Lab, Department of Chemistry, MLSU, Udaipur, 313001, Rajasthan, India
| | - Pankaj Teli
- Synthetic Organic Chemistry Lab, Department of Chemistry, MLSU, Udaipur, 313001, Rajasthan, India
| | - Priyadarshi Meena
- Cancer Biology Lab, Department of Zoology, University of Rajasthan, Jaipur, 302004, Rajasthan, India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Lab, Department of Chemistry, MLSU, Udaipur, 313001, Rajasthan, India
| |
Collapse
|
5
|
Monga J, Ghosh NS, Rani I, Singh R, Deswal G, Dhingra AK, Grewal AS. Unlocking the Pharmacological Potential of Benzimidazole Derivatives: A Pathway to Drug Development. Curr Top Med Chem 2024; 24:437-485. [PMID: 38311918 DOI: 10.2174/0115680266283641240109080047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024]
Abstract
Heterocyclic molecules have fascinated a massive interest in medicinal chemistry. They are heterocyclic compounds that have gained significance due to their diverse variety of pharmacological activities. Benzimidazole is a heterocyclic compound consisting of benzene and imidazole rings. The ease of synthesis and the structural versatility of benzimidazole make it a promising scaffold for drug development. Many biological actions of benzimidazole derivatives have been well documented, including antibacterial, antiviral, anticancer, anti-inflammatory, antitubercular, and anthelmintic properties. The mechanism of action of benzimidazole derivatives varies with their chemical structure and target enzyme. This review has explored numerous methods for producing benzimidazole derivatives as well as a broad range of pharmacological activities. SAR investigations are also discussed in this review as they provide crucial details regarding the essential structural qualities that benzimidazole derivatives must have in order to be biologically active, which could aid in the rational design of new drug candidates. Benzimidazole scaffold is an exclusive structure in drug design and discovery. Many new pharmaceutical drugs containing benzimidazole are anticipated to be available within the next ten years as a result of the extensive therapeutic applications of benzimidazole and its derivatives. This review inspired many researchers to develop more biologically active compounds bearing benzimidazole, expanding the scope of finding a remedy for other diseases. From this study, we concluded that 2-substituted benzimidazole was considered more extensively by researchers.
Collapse
Affiliation(s)
- Jyoti Monga
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Ch. Devi Lal College of Pharmacy, Jagadhri, Yamuna Nagar, Haryana, India
| | - Niladry S Ghosh
- Faculty of Pharmaceutical Sciences, Assam down town University, Guwahati, Assam, India
| | - Isha Rani
- Spurthy College of Pharmacy, Marasur Gate, Bengaluru, Karnataka, India
| | - Ranjit Singh
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
| | - Geeta Deswal
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | | | - Ajmer S Grewal
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| |
Collapse
|
6
|
Mocci R, Atzori L, Baratta W, De Luca L, Porcheddu A. N-Alkylation of aromatic amines with alcohols by using a commercially available Ru complex under mild conditions. RSC Adv 2023; 13:34847-34851. [PMID: 38035248 PMCID: PMC10688395 DOI: 10.1039/d3ra06751c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
An N-alkylation procedure has been developed under very mild conditions using a known commercially available Ru-based catalyst. As a result, a wide range of aromatic primary amines has been selectively alkylated with several primary alcohols, yielding the corresponding secondary amines in high yields. The methodology also enables the methylation of anilines in refluxing methanol and the preparation of a set of heterocycles in a straightforward way.
Collapse
Affiliation(s)
- Rita Mocci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
| | - Luciano Atzori
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
| | - Walter Baratta
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine via delle Scienze 206 33100 Udine Italy
| | - Lidia De Luca
- Dipartimento di Scienze Chimiche, FIsiche, Matematiche e Naturali, Università degli Studi di Sassari via Vienna 2 07100 Sassari Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
| |
Collapse
|
7
|
De S, Ranjan P, Chaurasia V, Pal S, Pal S, Pandey P, Bera JK. Synchronous Proton-Hydride Transfer by a Pyrazole-Functionalized Protic Mn(I) Complex in Catalytic Alcohol Dehydrogenative Coupling. Chemistry 2023; 29:e202301758. [PMID: 37490592 DOI: 10.1002/chem.202301758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
A series of Mn(I) complexes Mn(L1 )(CO)3 Br, Mn(L2 )(CO)3 Br, Mn(L1 )(CO)3 (OAc) and Mn(L3 )(CO)3 Br [L1 =2-(5-tert-butyl-1H-pyrazol-3-yl)-1,8-naphthyridine, L2 =2-(5-tert-butyl-1H-pyrazol-3-yl)pyridine, L3 =2-(5-tert-butyl-1-methyl-1H-pyrazol-3-yl)-1,8-naphthyridine] were synthesized and fully characterized. The acid-base equilibrium between the pyrazole and the pyrazolato forms of Mn(L1 )(CO)3 Br was studied by 1 H NMR and UV-vis spectra. These complexes are screened as catalysts for acceptorless dehydrogenative coupling (ADC) of primary alcohols and aromatic diamines for the synthesis of benzimidazole and quinoline derivatives with the release of H2 and H2 O as byproducts. The protic complex Mn(L1 )(CO)3 Br shows the highest catalytic activity for the synthesis of 2-substituted benzimidazole derivatives with broad substrate scope, whereas a related complex [Mn(L3 )(CO)3 Br], which is devoid of the proton responsive β-NH unit, shows significantly reduced catalytic efficiency validating the crucial role of the β-NH functionality for the alcohol dehydrogenation reactions. Control experiments, kinetic and deuterated studies, and density functional theory (DFT) calculations reveal a synchronous hydride-proton transfer by the metal-ligand construct in the alcohol dehydrogenation step.
Collapse
Affiliation(s)
- Subhabrata De
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Prabodh Ranjan
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Vishal Chaurasia
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sourav Pal
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Saikat Pal
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Pragati Pandey
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jitendra K Bera
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
8
|
Annes SB, Perumal K, Anandhakumar K, Shankar B, Ramesh S. Transition-Metal-Free Dehydrogenation of Benzyl Alcohol for C-C and C-N Bond Formation for the Synthesis of Pyrazolo[3,4- b]pyridine and Pyrazoline Derivatives. J Org Chem 2023; 88:6039-6057. [PMID: 37125502 DOI: 10.1021/acs.joc.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A series of cascade reactions that produce a range of functionalized aromatic heterocyclic compounds with pyrazole/pyrazoline cores have been developed. The method relies on a metal-free dehydrogenative process to produce in-situ benzaldehydes. The produced benzaldehyde was then allowed to react with some other substances, including acetophenone, pyrazole amine, and phenylhydrazine. The intermediate produced from these substrates underwent several chemical processes, including electrocyclization, the aza-Diels-Alder reaction, and the formation of intramolecular C-N bonds. These positive outcomes would open up the possibility of producing biologically active pyrazolo[3,4-b]pyridine and pyrazoline derivatives through a variety of possible reactions.
Collapse
Affiliation(s)
- Sesuraj Babiola Annes
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Karuppaiah Perumal
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Kalaiselvan Anandhakumar
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai 625 015, Tamil Nadu, India
| | - Subburethinam Ramesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
9
|
Wang S, Chen X, Bao L, Liu K, Bi Y, Xue Y, Liu X, Gu Q, Zhang Y. A Magnetic Fe
3
O
4
/Modified Bentonite Composite as Recyclable Heterogeneous Catalyst for Synthesizing 2‐Substituted Benzimidazoles. ChemistrySelect 2023. [DOI: 10.1002/slct.202204930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Shuang Wang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xiaodong Chen
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Lijian Bao
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Kejun Liu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yongchang Bi
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yafei Xue
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xiaowen Liu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Qiang Gu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yumin Zhang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
10
|
Kumar L, Verma N, Tomar R, Sehrawat H, Kumar R, Chandra R. Development of bioactive 2-substituted benzimidazole derivatives using an MnO x/HT nanocomposite catalyst. Dalton Trans 2023; 52:3006-3015. [PMID: 36779313 DOI: 10.1039/d2dt02923e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Benzimidazole is a vital moiety found in a wide range of naturally and pharmacologically active molecules. We prepared a proficient and facile manganese oxide-supported magnesium and aluminium-based nanocomposite catalytic framework using the deposition-precipitation method and characterised it with XRD, XPS, SEM, TEM, and TGA techniques. Following that, the catalyst was used in the green synthesis of highly functional 2-substituted benzimidazole derivatives in an ethanol-water solvent system at room temperature using various assorted benzaldehydes and o-phenylenediamine as substituents. The synthesised catalyst operates efficiently and is applicable to a wide range of electron-withdrawing and electron-donating substrates, resulting in good to excellent yields. The advantages of this process include the use of a greener solvent, high yield, high conversions, no use of additives or bases, a good TOF, and a shorter reaction time.
Collapse
Affiliation(s)
- Loveneesh Kumar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Nishant Verma
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Ravi Tomar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India. .,Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana-122505, India
| | - Hitesh Sehrawat
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Rupesh Kumar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India. .,Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India.
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India. .,Dr B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi 110007, India.,Institute of Nanomedical Sciences (INMS), University of Delhi, Delhi 110007, India
| |
Collapse
|
11
|
Basoccu F, Cuccu F, Caboni P, De Luca L, Porcheddu A. Mechanochemistry Frees Thiourea Dioxide (TDO) from the 'Veils' of Solvent, Exposing All Its Reactivity. Molecules 2023; 28:molecules28052239. [PMID: 36903485 PMCID: PMC10005452 DOI: 10.3390/molecules28052239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
The synthesis of nitrogen-based heterocycles has always been considered essential in developing pharmaceuticals in medicine and agriculture. This explains why various synthetic approaches have been proposed in recent decades. However performing as methods, they often imply harsh conditions or the employment of toxic solvents and dangerous reagents. Mechanochemistry is undoubtedly one of the most promising technologies currently used for reducing any possible environmental impact, addressing the worldwide interest in counteracting environmental pollution. Following this line, we propose a new mechanochemical protocol for synthesizing various heterocyclic classes by exploiting thiourea dioxide (TDO)'s reducing proprieties and electrophilic nature. Simultaneously exploiting the low cost of a component of the textile industry such as TDO and all the advantages brought by a green technique such as mechanochemistry, we plot a route towards a more sustainable and eco-friendly methodology for preparing heterocyclic moieties.
Collapse
Affiliation(s)
- Francesco Basoccu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Federico Cuccu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Pietro Caboni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Lidia De Luca
- Department of Chemical, Physical, Mathematical, and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Andrea Porcheddu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
- Correspondence:
| |
Collapse
|
12
|
Donthireddy SNR, Siddique M, Rit A. N-Heterocyclic Carbene-Supported Nickel-Catalyzed Selective (Un)Symmetrical N-Alkylation of Aromatic Diamines with Alcohols. J Org Chem 2023; 88:1135-1146. [PMID: 36603160 DOI: 10.1021/acs.joc.2c02639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The "borrowing hydrogen" (BH) approach for the N-alkylation of phenylenediamines using alcohols as coupling partners is highly challenging due to the selectivity issue of the generated products. Furthermore, the development of base-metal systems that can potentially substitute precious metals with competitive activity is a major challenge in BH catalysis. We present herein an efficient protocol for the N,N'-di-alkylation of aromatic diamines using an in situ-generated Ni-NHC complex from NiCl2 and the ligand L1, which gave access to a wide range of N,N'-di-alkylated orthophenylene diamines (rather than the generally observed benzimidazole derivatives), meta- and para-phenylene diamines along with 2,6-diamino pyridine derivatives in good to excellent yields. Moreover, the catalyst system was also successful in the derivatization of a clinically important drug molecule, Dapsone. Notably, the present protocol could be applied effectively to synthesize unsymmetrically substituted N,N'-di-alkylated diamines via sequential alkylation and is the first report in the base-metal system to the best of our knowledge. Diverse control experiments including the deuterium incorporation studies suggest that the present protocol proceeds via a BH sequence.
Collapse
Affiliation(s)
- S N R Donthireddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Misba Siddique
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
13
|
Qin H, Odilov A, Bonku EM, Zhu F, Hu T, Liu H, Aisa HA, Shen J. Facile Synthesis of Benzimidazoles via N-Arylamidoxime Cyclization. ACS OMEGA 2022; 7:45678-45687. [PMID: 36530318 PMCID: PMC9753192 DOI: 10.1021/acsomega.2c06554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
A facile synthesis of benzimidazoles was described by a one-pot process containing acylation-cyclization of N-arylamidoxime. This method provided an alternative synthesis of benzimidazoles with a certain diversity of substituted groups in acceptable yields (up to 96%). More importantly, the construction of bis-benzimidazole (8), the key intermediate for making telmisartan, was achieved by adopting this method that enabled avoiding the undesired nitration with nitric/sulfuric acid and the cyclization in polyphosphoric acid in the existing operations.
Collapse
Affiliation(s)
- Hongjian Qin
- Key
Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi, Xinjiang 830011, P.R. China
- University
of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
| | - Abdullajon Odilov
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P.R. China
- University
of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
| | - Emmanuel Mintah Bonku
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P.R. China
- University
of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
| | - Fuqiang Zhu
- Topharman
Shanghai Co., Ltd., No.
388 Jialilue Road, Zhangjiang Hitech Park, Shanghai 201203, P.R.
China
| | - Tianwen Hu
- Topharman
Shanghai Co., Ltd., No.
388 Jialilue Road, Zhangjiang Hitech Park, Shanghai 201203, P.R.
China
| | - He Liu
- Topharman
Shanghai Co., Ltd., No.
388 Jialilue Road, Zhangjiang Hitech Park, Shanghai 201203, P.R.
China
| | - Haji A. Aisa
- Key
Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi, Xinjiang 830011, P.R. China
- University
of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
| | - Jingshan Shen
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P.R. China
- University
of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
| |
Collapse
|
14
|
Anandaraj P, Ramesh R, Malecki JG. Direct Synthesis of Benzimidazoles by Pd(II) N^N^S-Pincer Type Complexes via Acceptorless Dehydrogenative Coupling of Alcohols with Diamines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Kocsis M, Szabados M, Ötvös SB, Samu GF, Fogarassy Z, Pécz B, Kukovecz Á, Kónya Z, Sipos P, Pálinkó I, Varga G. Selective production of imines and benzimidazoles by cooperative bismuth(III)/transition metal ion catalysis. J Catal 2022; 414:163-178. [DOI: 10.1016/j.jcat.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Nakayama T, Harada S, Kikkawa S, Hikawa H, Azumaya I. Palladium‐Catalyzed Dehydrogenative Synthesis of Imidazoquinolines in Water. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Taku Nakayama
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Shogo Harada
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| |
Collapse
|
17
|
Bhatt S, Meena N, Kumar M, Bhuvanesh N, Kumar A, Sharma AK, Joshi H. Design and Syntheses of Ruthenium ENE (E = S, Se) Pincer Complexes: A Versatile System for Catalytic and Biological Applications. Chem Asian J 2022; 17:e202200736. [PMID: 36065146 DOI: 10.1002/asia.202200736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Indexed: 11/09/2022]
Abstract
This report describes synthesis of two ruthenium(II) ENE pincer complexes (E = S, C1 and E = Se, C2 ) by the reaction of bis(2-(phenylchalcogenyl)ethyl)amine ( L1 , L2 ) with RuCl 2 (PPh 3 ) 3 . The complexes were characterized with the help of 1 H and 13 C{ 1 H} NMR, FTIR, HRMS, cyclic voltammetry and elemental analysis techniques. The structure and bonding mode of ligand with ruthenium in C2 was established with the help of single crystal X-ray diffraction. The complex showed distorted octahedral geometry with two chlorine atoms trans to each other. The Ru-Se bond distances (Å) are 2.4564(3)-2.4630(3), Ru-N distance is 2.181(2), Ru-P distance is 2.2999(6), and Ru-Cl distances are 2.4078(6)-2.4314(6). The complexes showed good to excellent catalytic activity for the N -alkylation of 1,2-phenylenediamine with benzyl alcohol derivatives to synthesize 1,2-disubstituted benzimidazole derivatives. The complexes were also found to be efficient for aerobic oxidation of benzyl alcohols to corresponding aldehydes which are precursors to the bisimines generated in situ during the synthesis of 1,2-disubstituted benzimidazole derivatives. Complex C2 where selenium is coordinated with ruthenium was found to be more efficient as compared to sulfur coordinated ruthenium complex C1 . Since ruthenium complexes are getting increasing attention for developing new anticancer agents, the preliminary studies like binding behavior of both the complexes towards CT-DNA were studied by competitive binding with ethidium bromide (EthBr) using emission spectroscopy. In addition, the interactions of C1-C2 were also studied with bovine serum albumin (BSA) using steady state fluorescence quenching and synchronous fluorescence studies. A good stability of Ru(II) state was observed by cyclic voltammetric studies of C1-C2 . Overall these molecules are good examples of bio-organometallic systems for catalytic and biological applications.
Collapse
Affiliation(s)
| | - Neha Meena
- BITS Pilani: Birla Institute of Technology and Science, Chemistry, INDIA
| | - Mukesh Kumar
- Central University of Rajasthan, Chemistry, INDIA
| | - Nattamai Bhuvanesh
- Texas A&M University College Station: Texas A&M University, Chemistry, INDIA
| | - Anil Kumar
- BITS: Birla Institute of Technology & Science Pilani, Chemistry, INDIA
| | | | - Hemant Joshi
- Central University of Rajasthan, Ajmer, Chemistry, Department of Chemistry, Central University of Rajasthan, 305817, Bandarsindri, Ajmer, INDIA
| |
Collapse
|
18
|
Tocco G, Laus A, Caboni P. Mukaiyama reagent: An efficient reaction mediator for rapid synthesis of 1,2-disubstituted-1H-benzo[d]imidazoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Wang Y, Zhang FL, Liu ZJ, Yao ZJ. Half-Sandwich Iridium Complexes with Hydrazone Ligands: Synthesis and Catalytic Activity in N-Alkylation of Anilines or Nitroarenes with Alcohols via Hydrogen Autotransfer. Inorg Chem 2022; 61:10310-10320. [PMID: 35767836 DOI: 10.1021/acs.inorgchem.2c00703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we synthesize a series of hydrazone-based N,O-chelate half-sandwich iridium complexes through a facile route. All air-stable iridium complexes show high catalytic activity in N-alkylation of a broad scope of aniline derivatives and alcohols with liberating water as the sole byproduct. This reaction provides a smooth route to synthesize diverse monoalkylated amines in good to excellent yields at moderate temperature with a low catalyst loading. Moreover, the challenging N-alkylation process using nitroarene substrates as coupling partners is also carried out in this catalytic system. The mechanistic study shows that the present iridium catalysis process proceeds through a hydrogen borrowing mechanism. All iridium(III) complexes 1-4 are characterized by infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and elemental analysis.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fang-Lei Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zi-Jian Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.,Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
20
|
Fu J, Yue Y, Liu K, Wang S, Zhang Y, Su Q, Gu Q, Lin F, Zhang Y. PTSA-catalyzed selective synthesis and antibacterial evaluation of 1,2-disubstituted benzimidazoles. Mol Divers 2022; 27:873-887. [PMID: 35718840 DOI: 10.1007/s11030-022-10460-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Herein, we developed a convenient and efficient method via protonation of p-toluenesulfonic acid promoted cyclocondensation of o-phenylenediamine and aldehydes for selectively synthesizing 1,2-disubstituted benzimidazoles. This method displayed broad substrate adaptability and afforded the desired products in moderate to excellent yield in short reaction time. The effect of different substituents on the yield was investigated by extending optimum reaction conditions, which was further confirmed by theoretical calculations. It suggested that the surface electrostatic potential of oxygen atom and nitrogen atom on the substrates played important role in the synthesis of 1,2-disubstituted benzimidazoles. Besides, the crystal structure of compound 2t in the orthorhombic space group P2(1)/c was presented. Also, the anti-mycolicibacterium smegmatis (MC2155) activity was evaluated using rifampicin as a positive control. The products (2a, 2b, 2c, 2i, 2j, 2k, 2m) showed good antibacterial activities which were comparable to rifampicin.
Collapse
Affiliation(s)
- Jiaxu Fu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Yuandong Yue
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Kejun Liu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Shuang Wang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Yiliang Zhang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Qing Su
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Qiang Gu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Feng Lin
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Yumin Zhang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
21
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
22
|
N E ASWATHIRAVINDRAN, Sindhuja D, Bhuvanesh N, Karvembu R. Synthesis of 1,2‐disubstituted benzimidazoles via acceptorless dehydrogenative coupling using Ru(II)‐arene catalysts containing ferrocene thiosemicarbazone. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- ASWATHI RAVINDRAN N E
- National Institute of Technology Tiruchirappalli Chemistry 620015 Tiruchirappalli INDIA
| | | | - Nattamai Bhuvanesh
- Texas A&M University College Station: Texas A&M University Chemistry INDIA
| | - R Karvembu
- National Institute of Technology Department of Chemistry Tanjore Road 620015 Tiruchirappalli INDIA
| |
Collapse
|
23
|
Oliaei S, Habibi D, Heydari S, Karamian R, Ranjbar N. Design, preparation, biological investigations and application of a benzoguanamine-based nickel complex for the synthesis of benzimidazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Rodenes M, Gonell F, Martín S, Corma A, Sorribes I. Molecularly Engineering Defective Basal Planes in Molybdenum Sulfide for the Direct Synthesis of Benzimidazoles by Reductive Coupling of Dinitroarenes with Aldehydes. JACS AU 2022; 2:601-612. [PMID: 35373204 PMCID: PMC8965831 DOI: 10.1021/jacsau.1c00477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Developing more sustainable catalytic processes for preparing N-heterocyclic compounds in a less costly, compact, and greener manner from cheap and readily available reagents is highly desirable in modern synthetic chemistry. Herein, we report a straightforward synthesis of benzimidazoles by reductive coupling of o-dinitroarenes with aldehydes in the presence of molecular hydrogen. An innovative molecular cluster-based synthetic strategy that employs Mo3S4 complexes as precursors have been used to engineer a sulfur-deficient molybdenum disulfide (MoS2)-type material displaying structural defects on both the naturally occurring edge positions and along the typically inactive basal planes. By applying this catalyst, a broad range of functionalized 2-substituted benzimidazoles, including bioactive compounds, can be selectively synthesized by such a direct hydrogenative coupling protocol even in the presence of hydrogenation-sensitive functional groups, such as double and triple carbon-carbon bonds, nitrile and ester groups, and halogens as well as diverse types of heteroarenes.
Collapse
Affiliation(s)
- Miriam Rodenes
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | - Francisco Gonell
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | - Santiago Martín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Departamento
de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Avelino Corma
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | - Iván Sorribes
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| |
Collapse
|
25
|
Verma S, Kujur S, Sharma R, Pathak DD. Cucurbit[6]uril-Supported Fe 3O 4 Magnetic Nanoparticles Catalyzed Green and Sustainable Synthesis of 2-Substituted Benzimidazoles via Acceptorless Dehydrogenative Coupling. ACS OMEGA 2022; 7:9754-9764. [PMID: 35350370 PMCID: PMC8945128 DOI: 10.1021/acsomega.1c07350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/25/2022] [Indexed: 06/02/2023]
Abstract
A new composite, cucurbit[6]uril (CB[6])-supported magnetic nanoparticles, Fe3O4-CB[6], was synthesized via a co-precipitation method in air and fully characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetric analysis, inductively coupled plasma-mass spectrometry, and vibrating sample magnetometry techniques. It has been found to be a highly efficient, economic, and sustainable heterogeneous catalyst and has been employed for the first time for the synthesis of a series of biologically important 2-substituted benzimidazoles from various benzyl alcohols and 1,2-diaminobenzenes under solvent-free conditions via acceptorless dehydrogenative coupling to afford the corresponding products in good to excellent yields (68-94%). The magnetic nature of the nanocomposite facilitates the facile recovery of the catalyst from the reaction mixture by an external magnet. The catalyst can be reused up to five times with negligible loss in its catalytic activity. All the isolated products were characterized by 1H and 13C{1H} NMR spectroscopy.
Collapse
Affiliation(s)
- Shruti Verma
- Department
of Chemistry and Chemical Biology, Indian
Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Shelly Kujur
- Department
of Chemistry and Chemical Biology, Indian
Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Richa Sharma
- Department
of Chemistry, Faculty of Science, Dayalbagh
Educational Institute, Dayalbagh, Agra 282005, India
| | - Devendra D. Pathak
- Department
of Chemistry and Chemical Biology, Indian
Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
26
|
Mondal A, Sharma R, Dutta B, Pal D, Srimani D. Well-Defined NNS-Mn Complex Catalyzed Selective Synthesis of C-3 Alkylated Indoles and Bisindolylmethanes Using Alcohols. J Org Chem 2022; 87:3989-4000. [PMID: 35258302 DOI: 10.1021/acs.joc.1c02702] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we demonstrated Mn-catalyzed selective C-3 functionalization of indoles with alcohols. The developed catalyst can also furnish bis(indolyl)methanes from the same set of substrates under slightly modified reaction conditions. Mechanistic studies reveal that the C-3 functionalization of indoles is going via a borrowing hydrogen pathway. To highlight the practical utility, a diverse range of substrates including nine structurally important drug molecules are synthesized. Furthermore, we also introduced a one-pot cascade strategy for synthesizing C-3 functionalized indoles directly from 2-aminophenyl ethanol and alcohol.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Rahul Sharma
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Bishal Dutta
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
27
|
Zubar V, Brzozowska A, Sklyaruk J, Rueping M. Dehydrogenative and Redox-Neutral N-Heterocyclization of Aminoalcohols Catalyzed by Manganese Pincer Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Viktoriia Zubar
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Aleksandra Brzozowska
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Jan Sklyaruk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Pal D, Mondal A, Srimani D. Well-defined manganese complex catalyzed dehydrogenative synthesis of quinazolin-4(3 H)-ones and 3,4-dihydro-2 H-1,2,4-benzothiadiazine 1,1-dioxides. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00260d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of N-heterocycles has been considered an emerging topic of chemical research due to its widespread usage in medicinal chemistry, materials science, and natural product synthesis.
Collapse
Affiliation(s)
- Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
29
|
Hu J, Li M, Wan J, Sun J, Gao H, Zhang F, Zhang Z. Metal-free oxidative synthesis of benzimidazole compounds by dehydrogenative coupling of diamines and alcohols. Org Biomol Chem 2022; 20:2852-2856. [DOI: 10.1039/d2ob00165a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A general catalytic protocol for the synthesis of substituted N-heterocycles by dehydrogenative coupling of diamines and alcohols.
Collapse
Affiliation(s)
- Jiaming Hu
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengjia Li
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Wan
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jinnan Sun
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hu Gao
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Zhang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhibing Zhang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
30
|
Mondal R, Guin AK, Pal S, Mondal S, Paul ND. Sustainable synthesis of pyrazoles using alcohols as the primary feedstock by an iron catalyzed tandem C–C and C–N coupling approach. Org Chem Front 2022. [DOI: 10.1039/d2qo01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report two new efficient iron-catalyzed synthetic strategies for multicomponent synthesis of tri-substituted pyrazoles using biomass-derived alcohols as the primary feedstock.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
31
|
He Y, Huang T, Shi X, Chen Y, Wu Q. Recent Advances in Photocatalytic Reactions with Isocyanides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Selective C-C bonds formation, N-alkylation and benzo[d]imidazoles synthesis by a recyclable zinc composite. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Rodríguez-Huerto PA, Peña-Solórzano D, Ochoa-Puentes C. Nitroarenes as versatile building blocks for the synthesis of unsymmetrical urea derivatives and N-Arylmethyl-2-substituted benzimidazoles. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01785-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Hofmann N, Hultzsch KC. Borrowing Hydrogen and Acceptorless Dehydrogenative Coupling in the Multicomponent Synthesis of N‐Heterocycles: A Comparison between Base and Noble Metal Catalysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Natalie Hofmann
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| | - Kai C. Hultzsch
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| |
Collapse
|
35
|
Luo L, Liu H, Zeng W, Hu W, Wang D. BTP‐Rh@g‐C
3
N
4
as an efficient recyclable catalyst for dehydrogenation and borrowing hydrogen reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lan Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Hongqiang Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
- China Synchem Technology Co., Ltd. Bengbu China
| | - Wei Zeng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Wenkang Hu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| |
Collapse
|
36
|
Shadab, Dey G, Sk M, Banerjee D, Aijaz A. Heterogenizing a Homogeneous Nickel Catalyst Using Nanoconfined Strategy for Selective Synthesis of Mono- and 1,2-Disubstituted Benzimidazoles. Inorg Chem 2021; 60:16042-16047. [PMID: 34652151 DOI: 10.1021/acs.inorgchem.1c02017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A homogeneous Ni-phenanthroline catalyst was successfully immobilized into the cavities of a metal-organic framework, ZIF-8. The as-synthesized heterogeneous catalyst, Ni-Phen@ZIF, represents the first MOF based catalyst that enables dehydrogenative coupling of alcohols with aromatic diamines for selective synthesis of both mono- and 1,2-disubstituted benzimidazoles. The catalyst survived under harsh basic conditions, characterized by SEM, TEM, BET, PXRD, and EDX elemental mappings. The presence of the nanoconfined Ni-phenanthroline complex and the formation of extra Lewis acid sites during catalysis in the Ni-Phen@ZIF structure, confirmed by TPD analysis and kinetic experiments, might be responsible for higher activity and selectivity.
Collapse
Affiliation(s)
- Shadab
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Jais, Amethi, Uttar Pradesh 229304, India
| | - Gargi Dey
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Jais, Amethi, Uttar Pradesh 229304, India
| | - Motahar Sk
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Arshad Aijaz
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Jais, Amethi, Uttar Pradesh 229304, India
| |
Collapse
|
37
|
Li J, Liu H, Zhu H, Yao W, Wang D. Highly Efficient and Recyclable Porous Organic Polymer Supported Iridium Catalysts for Dehydrogenation and Borrowing Hydrogen Reactions in Water. ChemCatChem 2021. [DOI: 10.1002/cctc.202101168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jiahao Li
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
| | - Hongqiang Liu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
- China Synchem Technology Co., Ltd. Bengbu Anhui 233000 P. R. China
| | - Haiyan Zhu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
| | - Wei Yao
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
| |
Collapse
|
38
|
Mondal A, Sharma R, Pal D, Srimani D. Manganese catalyzed switchable C-alkylation/alkenylation of fluorenes and indene with alcohols. Chem Commun (Camb) 2021; 57:10363-10366. [PMID: 34541595 DOI: 10.1039/d1cc03529k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The usage of earth-abundant, nontoxic transition metals in place of rare noble metals is a central goal in catalysis. This would be especially interesting when the reactivity and selectivity patterns can be tuned. Herein, we introduced the first Mn-catalyzed selective C-alkylation and olefination of fluorene, and indene with alcohols. Various substrates including benzylic, heteroaromatic, and aliphatic primary and secondary alcohols are employed as alkylating agents. Mechanistic investigations and a kinetic study underpin the involvement of the olefinated intermediate to furnish the alkylated product.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Rahul Sharma
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| |
Collapse
|
39
|
Mondal R, Chakraborty G, Guin AK, Sarkar S, Paul ND. Iron-Catalyzed Alkyne-Based Multicomponent Synthesis of Pyrimidines under Air. J Org Chem 2021; 86:13186-13197. [PMID: 34528802 DOI: 10.1021/acs.joc.1c00867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An iron-catalyzed sustainable, economically affordable, and eco-friendly synthetic protocol for the construction of various trisubstituted pyrimidines is described. A wide range of trisubstituted pyrimidines were prepared using a well-defined, easy to prepare, bench-stable, and phosphine-free iron catalyst featuring a redox-noninnocent tridentate arylazo pincer under comparatively mild aerobic conditions via dehydrogenative functionalization of alcohols with alkynes and amidines.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Susmita Sarkar
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
40
|
Kanta Mahato R, Kumar Mudi P, Deb M, Biswas B. A Direct Metal‐Free Synthetic Approach for the Efficient Production of Privileged Benzimidazoles in Water Medium under Aerobic Condition. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rajani Kanta Mahato
- Department of Chemistry University of North Bengal Raja Rammohanpur Darjeeling West Bengal-734013 India
| | - Prafullya Kumar Mudi
- Department of Chemistry University of North Bengal Raja Rammohanpur Darjeeling West Bengal-734013 India
| | - Mayukh Deb
- Department of Chemistry University of North Bengal Raja Rammohanpur Darjeeling West Bengal-734013 India
| | - Bhaskar Biswas
- Department of Chemistry University of North Bengal Raja Rammohanpur Darjeeling West Bengal-734013 India
| |
Collapse
|
41
|
Bera S, Kabadwal LM, Banerjee D. Recent advances in transition metal-catalyzed (1, n) annulation using (de)-hydrogenative coupling with alcohols. Chem Commun (Camb) 2021; 57:9807-9819. [PMID: 34486592 DOI: 10.1039/d1cc03404a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(1,n) annulation reactions using (de)-hydrogenative coupling with alcohols or diols represent a straightforward technique for the synthesis of cyclic moieties. Utilization of such renewable resources for chemical transformations in a one-pot manner is the main focus, which avoids generation of stoichiometric waste. Application of such (1,n) annulation approaches drives the catalysis research in a more sustainable way and generates dihydrogen and water as by-products. This feature article highlights the recent (from 2015 to March 2021) progress in the synthesis of stereo-selective cycloalkanes and cycloalkenes, saturated and unsaturated N-heterocycles (cyclic amine, imide, lactam, tetrahydro β-carboline, quinazoline, quinazolinone, 1,3,5-triazines etc.) and other N-heterocycles with the formation of multiple bonds in a one pot operation. Mechanistic studies, new catalytic approaches, and synthetic applications including drug synthesis and post-drug derivatization, scope, and limitations are discussed.
Collapse
Affiliation(s)
- Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
42
|
Chakraborty G, Mondal R, Guin AK, Paul ND. Nickel catalyzed sustainable synthesis of benzazoles and purines via acceptorless dehydrogenative coupling and borrowing hydrogen approach. Org Biomol Chem 2021; 19:7217-7233. [PMID: 34612344 DOI: 10.1039/d1ob01154e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein we report nickel-catalyzed sustainable synthesis of a few chosen five-membered fused nitrogen heterocycles such as benzimidazole, purine, benzothiazole, and benzoxazole via acceptorless dehydrogenative functionalization of alcohols. Using a bench stable, easy to prepare, and inexpensive Ni(ii)-catalyst, [Ni(MeTAA)] (1a), featuring a tetraaza macrocyclic ligand (tetramethyltetraaza[14]annulene (MeTAA)), a wide variety of polysubstituted benzimidazole, purine, benzothiazole, and benzoxazole derivatives were prepared via dehydrogenative coupling of alcohols with 1,2-diaminobenzene, 4,5-diaminopyrimidine, 2-aminothiphenol, and 2-aminophenol, respectively. A wide array of benzimidazoles were also prepared via a borrowing hydrogen approach involving alcohols as hydrogen donors and 2-nitroanilines as hydrogen acceptors. A few control experiments were performed to understand the reaction mechanism.
Collapse
Affiliation(s)
- Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | | | | | | |
Collapse
|
43
|
Trincado M, Bösken J, Grützmacher H. Homogeneously catalyzed acceptorless dehydrogenation of alcohols: A progress report. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213967] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Li W, Huang M, Liu J, Huang YL, Lan XB, Ye Z, Zhao C, Liu Y, Ke Z. Enhanced Hydride Donation Achieved Molybdenum Catalyzed Direct N-Alkylation of Anilines or Nitroarenes with Alcohols: From Computational Design to Experiment. ACS Catal 2021; 11:10377-10382. [DOI: 10.1021/acscatal.1c02956] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Weikang Li
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ming Huang
- Department School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Jiahao Liu
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Xiao-Bing Lan
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zongren Ye
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Cunyuan Zhao
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
45
|
Das K, Barman MK, Maji B. Advancements in multifunctional manganese complexes for catalytic hydrogen transfer reactions. Chem Commun (Camb) 2021; 57:8534-8549. [PMID: 34369488 DOI: 10.1039/d1cc02512k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Catalytic hydrogen transfer reactions have enormous academic and industrial applications for the production of diverse molecular scaffolds. Over the past few decades, precious late transition-metal catalysts were employed for these reactions. The early transition metals have recently gained much attention due to their lower cost, less toxicity, and overall sustainability. In this regard, manganese, which is the third most abundant transition metal in the Earth's crust, has emerged as a viable alternative. However, the key to the success of such manganese-based complexes lies in the multifunctional ligand design and choice of appropriate ancillary ligands, which helps them mimic and, even in some cases, supersede noble metals' activities. The metal-ligand bifunctionality, achieved via deprotonation of the acidic C-H or N-H bonds, is one of the powerful strategies employed for this purpose. Alongside, the ligand hemilability in which a weakly chelating group tunes in between the coordinated and uncoordinated stages could effectively stabilize the reactive intermediates, thereby facilitating substrate activation and catalysis. Redox non-innocent ligands acting as an electron sink, thereby helping the metal center in steps gaining or losing electrons, and non-classical metal-ligand cooperativity has also played a significant role in the ligand design for manganese catalysis. The strategies were not only employed for the chemoselective hydrogenation of different reducible functionalities but also for the C-X (X = C/N) coupling reactions via HT and downstream cascade processes. This article features multifunctional ligand-based manganese complexes, highlighting the importance of ligand design and choice of ancillary ligands for achieving the desired catalytic activity and selectivity for HT reactions. We have also discussed the detailed reaction pathways for metal complexes involving bifunctionality, hemilability, redox activity, and indirect metal-ligand cooperativity. The synthetic utilization of those complexes in different organic transformations has also been detailed.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | | | | |
Collapse
|
46
|
Mondal A, Sharma R, Pal D, Srimani D. Recent Progress in the Synthesis of Heterocycles through Base Metal‐Catalyzed Acceptorless Dehydrogenative and Borrowing Hydrogen Approach. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Avijit Mondal
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Rahul Sharma
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Debjyoti Pal
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| |
Collapse
|
47
|
Nad P, Mukherjee A. Acceptorless Dehydrogenative Coupling Reactions by Manganese Pincer Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pinaki Nad
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| | - Arup Mukherjee
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| |
Collapse
|
48
|
Sarkar A, Jana S, Nayek HP. A pentanuclear Er (III) coordination cluster as a catalyst for selective synthesis of 1,2‐disubstituted benzimidazoles. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arijit Sarkar
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 India
| | - Sourav Jana
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 India
| | - Hari Pada Nayek
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 India
| |
Collapse
|
49
|
Rakib EM, Boga C, Calvaresi M, Chigr M, Franchi P, Gualandi I, Ihammi A, Lucarini M, Micheletti G, Spinelli D, Tonelli D. A multidisciplinary study of chemico-physical properties of different classes of 2-aryl-5(or 6)-nitrobenzimidazoles: NMR, electrochemical behavior, ESR, and DFT calculations. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
50
|
|