1
|
Crich D. Chemical synthesis-based structure correction of a claimed protein-free antifreeze oligosaccharide. Natl Sci Rev 2024; 11:nwae364. [PMID: 39606145 PMCID: PMC11601987 DOI: 10.1093/nsr/nwae364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Affiliation(s)
- David Crich
- Departments of Pharmaceutical and Biomedical Science, and Chemistry, and Complex Carbohydrate Research Center, University of Georgia, USA
| |
Collapse
|
2
|
Franz AH, Bromley KS, Aung ET, Do SQL, Rosenblatt HM, Watson AJ. NMR Coupling Constants, Karplus Equations, and Adjusted MD Statistics: Detecting Diagnostic Torsion Angles for the Solution Geometry of 6-[α-d-Mannopyranosyl]-d-Mannopyranose (Mannobiose). MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024. [PMID: 39415469 DOI: 10.1002/mrc.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
The quantitative solution conformations of 2-(hydroxymethyl)-tetrahydropyran, α-methyl-d-mannopyranoside, and 6-[α-d-mannopyranosyl]-d-mannopyranose (mannobiose) are described. Parametrized Karplus equations for redundant spin pairs across the terminal ω-torsion and the glycosidic ω-torsion for mannobiose are developed, including ω/θ-hypersurfaces for the terminal hydroxymethylene group. Experimental NMR data, algorithmic spectral simulation (clustered Hamiltonian method), molecular dynamics (MD) simulations (GLYCAM06), energy minimizations by DFT, and adjusted torsion angle populations weighted over the Karplus-type equations are used. We demonstrate that spectral simulation is a powerful tool in the refinement of initial J values obtained from static GAIO DFT calculations. We also show that only as few as one of multiple redundant torsions can be diagnostic for conformational analysis of the disaccharide.
Collapse
Affiliation(s)
- Andreas H Franz
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Kendall S Bromley
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Ei T Aung
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Stephen Q L Do
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Hana M Rosenblatt
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Amelia J Watson
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| |
Collapse
|
3
|
Zhu Q, Nicolardi S, Wang Y, Liu Y, Xu P, Wang J, Zhu D, Yu B. Expeditious chemical synthesis of xylomannans disproves the proposed antifreeze activities. Natl Sci Rev 2024; 11:nwae296. [PMID: 39315280 PMCID: PMC11418650 DOI: 10.1093/nsr/nwae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
Cold-adapted species are able to generate cryoprotective proteins and glycoproteins to prevent freezing damage. The [→4)-β-D-Manp-(1→4)-β-D-Xylp-(1→] n xylomannan from the Alaska beetle Upis ceramboides was disclosed by Walters and co-workers in 2009 as the first glycan-based antifreeze agent, which was later reported to be found in diverse taxa. Here, we report the rapid synthesis of four types of xylomannans, including the proposed antifreeze xylomannan up to a 64-mer (Type I), the regioisomeric [→3)-β-D-Manp-(1→4)-β-D-Xylp-(1→] n 16-mer (Type II), the diastereomeric [→4)-β-L-Manp-(1→4)-β-D-Xylp-(1→] n 16-mer (Type III) and the block-wise [→4)-β-D-Manp-(1→] m [→4)-β-D-Xylp-(1→] n 32-mer (Type IV), by employing a strategic iterative exponential glycan growth (IEGG) process. The nuclear magnetic resonance spectral data of the alleged natural xylomannan are in accordance only to those of the block-wise Type IV glycan and none of these synthetic xylomannans has been found to be capable of inducing thermal hysteresis. These results disprove the previous reports about the natural occurrence of antifreeze xylomannans.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Yuanguang Wang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yasong Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dapeng Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Lotsman KA, Rodygin KS, Skvortsova I, Kutskaya AM, Minyaev ME, Ananikov VP. Atom-economical synthesis of 1,2-bis(phosphine oxide)ethanes from calcium carbide with straightforward access to deuterium- and 13C-labeled bidentate phosphorus ligands and metal complexes. Org Chem Front 2023. [DOI: 10.1039/d2qo01652d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Straightforward access to bidentate phosphorus ligands and bis(phosphineoxide)ethanes is described based on atom-economic addition reaction. A practical approach was developed to incorporate 2H and 13C labels using easily available reagents.
Collapse
Affiliation(s)
- Kristina A. Lotsman
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
| | - Konstantin S. Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
| | - Irina Skvortsova
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
| | - Anastasia M. Kutskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia
| | - Valentine P. Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia
| |
Collapse
|
5
|
Dal Colle MCS, Fittolani G, Delbianco M. Synthetic Approaches to Break the Chemical Shift Degeneracy of Glycans. Chembiochem 2022; 23:e202200416. [PMID: 36005282 PMCID: PMC10087674 DOI: 10.1002/cbic.202200416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Indexed: 01/25/2023]
Abstract
NMR spectroscopy is the leading technique for determining glycans' three-dimensional structure and dynamic in solution as well as a fundamental tool to study protein-glycan interactions. To overcome the severe chemical shift degeneracy of these compounds, synthetic probes carrying NMR-active nuclei (e. g., 13 C or 19 F) or lanthanide tags have been proposed. These elegant strategies permitted to simplify the complex NMR analysis of unlabeled analogues, shining light on glycans' conformational aspects and interaction with proteins. Here, we highlight some key achievements in the synthesis of specifically labeled glycan probes and their contribution towards the fundamental understanding of glycans.
Collapse
Affiliation(s)
- Marlene C. S. Dal Colle
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Giulio Fittolani
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
6
|
Tetrault T, Meredith RJ, Zhang W, Carmichael I, Serianni AS. One-Bond 13C- 1H and 13C- 13C Spin-Coupling Constants as Constraints in MA'AT Analysis of Saccharide Conformation. J Phys Chem B 2022; 126:9506-9515. [PMID: 36356177 DOI: 10.1021/acs.jpcb.2c04986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MA'AT analysis uses ensembles of redundant experimental NMR spin-coupling constants, parametrized J-coupling equations obtained from density functional theory (DFT) calculations, and circular statistics to produce probability distributions of molecular torsion angles in solution and information on librational motions about these angles (Meredith et al., J. Chem. Info. Model. 2022, 62, 3135-3141). Current DFT methods give nearly quantitative two- and three-bond JHH, JCH, and 1JCC values for use in MA'AT analysis of saccharides. In contrast, the accuracy of DFT-calculated one-bond 1JCH and 1JCC values is more difficult to determine, preventing their use in MA'AT modeling. This report describes experimental and computational studies that address this problem using two approaches (Strategies 1 and 2). Differences [1JCHcalc - 1JCHexp] (Strategy 1) ranged from -1.2 to 2.5 Hz, giving an average difference of 0.8 ± 1.7 Hz. Percent differences ranged from -0.8% to 1.6%, giving an average % difference of 0.5 ± 1.1%. In comparison, [1JCHMA'AT - 1JCHexp] (Strategy 2) ranged from -1.8 to 0.2 Hz, giving an average difference of -1.2 ± 0.7 Hz. Percent differences ranged from -1.2% to 0.1%, giving an average % difference of -0.8 ± 0.5%. Strategy 1 gave an average difference of 2.1 Hz between calculated and experimental 1JCC values, with an average % difference of 5.1 ± 0.2%. Calculated 1JCC values were consistently larger than experimental values. Strategy 2 also gave calculated 1JCC values that were larger than the experimental values, with an average difference of 2.3 ± 0.6 Hz, and an average % difference of 5.6 ± 1.6%. The findings of both strategies are similar and indicate that 1JCH values in saccharides can be calculated nearly quantitatively, but 1JCC values appear to be consistently overestimated by ∼5% using current DFT methods.
Collapse
Affiliation(s)
| | | | - Wenhui Zhang
- Omicron Biochemicals, Inc., South Bend, Indiana 46617, United States
| | | | | |
Collapse
|
7
|
Krivdin LB. Computational 1 H and 13 C NMR in structural and stereochemical studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:733-828. [PMID: 35182410 DOI: 10.1002/mrc.5260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Present review outlines the advances and perspectives of computational 1 H and 13 C NMR applied to the stereochemical studies of inorganic, organic, and bioorganic compounds, involving in particular natural products, carbohydrates, and carbonium ions. The first part of the review briefly outlines theoretical background of the modern computational methods applied to the calculation of chemical shifts and spin-spin coupling constants at the DFT and the non-empirical levels. The second part of the review deals with the achievements of the computational 1 H and 13 C NMR in the stereochemical investigation of a variety of inorganic, organic, and bioorganic compounds, providing in an abridged form the material partly discussed by the author in a series of parent reviews. Major attention is focused herewith on the publications of the recent years, which were not reviewed elsewhere.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
8
|
Meredith R, Carmichael I, Serianni AS. Nonconventional NMR Spin-Coupling Constants in Oligosaccharide Conformational Modeling: Structural Dependencies Determined from Density Functional Theory Calculations. ACS OMEGA 2022; 7:23950-23966. [PMID: 35847250 PMCID: PMC9280969 DOI: 10.1021/acsomega.2c02793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonconventional NMR spin-coupling constants were investigated to determine their potential as conformational constraints in MA'AT modeling of the O-glycosidic linkages of oligosaccharides. Four (1 J C1',H1', 1 J C1',C2', 2 J C1',H2', and 2 J C2',H1') and eight (1 J C4,H4, 1 J C3,C4, 1 J C4,C5, 2 J C3,H4, 2 J C4,H3, 2 J C5,H4, 2 J C4,H5, and 2 J C3,C5) spin-couplings in methyl β-d-galactopyranosyl-(1→4)-β-d-glucopyranoside (methyl β-lactoside) were calculated using density functional theory (DFT) to determine their dependencies on O-glycosidic linkage C-O torsion angles, ϕ and ψ, respectively. Long-range 4 J H1',H4 was also examined as a potential conformational constraint of either ϕ or ψ. Secondary effects of exocyclic (hydroxyl) C-O bond rotation within or proximal to these coupling pathways were investigated. Based on the findings of methyl β-lactoside, analogous J-couplings were studied in five additional two-bond O-glycosidic linkages [βGlcNAc-(1→4)-βMan, 2-deoxy-βGlc-(1→4)-βGlc, αMan-(1→3)-βMan, αMan-(1→2)-αMan, and βGlcNAc(1→2)-αMan] to determine whether the coupling behaviors observed in methyl β-lactoside were more broadly observed. Of the 13 nonconventional J-couplings studied, 7 exhibit properties that may be useful in future MA'AT modeling of O-glycosidic linkages, none of which involve coupling pathways that include the linkage C-O bonds. The findings also provide new insights into the general effects of exocyclic C-O bond conformation on the magnitude of experimental spin-couplings in saccharides and other hydroxyl-containing molecules.
Collapse
Affiliation(s)
- Reagan
J. Meredith
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556-5670, United States
| | - Ian Carmichael
- Radiation
Laboratory, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Anthony S. Serianni
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556-5670, United States
| |
Collapse
|
9
|
Meredith RJ, Sernau L, Serianni AS. MA'AT: A Web-Based Application to Determine Rotamer Population Distributions in Solution from Nuclear Magnetic Resonance Spin-Coupling Constants. J Chem Inf Model 2022; 62:3135-3141. [PMID: 35730994 DOI: 10.1021/acs.jcim.1c01166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A hybrid experimental-computational method to determine conformational equilibria of molecules in solution has been developed based on the use of redundant nuclear magnetic resonance (NMR) spin-spin coupling constants (spin-couplings; J-couplings), density functional theory (DFT) calculations, and circular statistics. The mathematics that underpins the method, known as MA'AT analysis, is presented, and key components of a computer program that applies this algorithm are discussed. The method was tested using single-state and multi-state models to identify the factors required to obtain reliable results, to establish the limitations of the method, and to highlight techniques to evaluate the uniqueness of solution.
Collapse
Affiliation(s)
- Reagan J Meredith
- Department of Chemistry and Biochemistry,University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Luke Sernau
- Department of Chemistry and Biochemistry,University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Anthony S Serianni
- Department of Chemistry and Biochemistry,University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
10
|
Meredith RJ, McGurn M, Euell C, Rutkowski P, Cook E, Carmichael I, Serianni AS. MA'AT Analysis of Aldofuranosyl Rings: Unbiased Modeling of Conformational Equilibria and Dynamics in Solution. Biochemistry 2022; 61:239-251. [PMID: 35104120 DOI: 10.1021/acs.biochem.1c00630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MA'AT analysis has been applied to methyl β-d-ribofuranoside (3) and methyl 2-deoxy-β-d-erythro-pentofuranoside (4) to demonstrate the ability of this new experimental method to determine multi-state conformational equilibria in solution. Density functional theory (DFT) was used to obtain parameterized equations for >20 NMR spin-coupling constants sensitive to furanose ring conformation in 3 and 4, and these equations were used in conjunction with experimental spin-couplings to produce unbiased MA'AT models of ring pseudorotation. These models describe two-state north-south conformational exchange consistent with results obtained from traditional treatments of more limited sets of NMR spin-couplings (e.g., PSEUROT). While PSEUROT, MA'AT, and aqueous molecular dynamics models yielded similar two-state models, MA'AT analysis gives more reliable results since significantly more experimental observables are employed compared to PSEUROT, and no assumptions are needed to render the fitting tractable. MA'AT models indicate a roughly equal distribution of north and south ring conformers of 4 in aqueous (2H2O) solution compared to ∼80% north forms for 3. Librational motion about the mean pseudorotation phase angles P of the preferred north and south conformers of 3 in solution is more constrained than that for 4. The greater rigidity of the β-ribo ring may be caused by synergistic stereoelectronic effects and/or noncovalent (e.g., hydrogen-bonding) interactions in solution that preferentially stabilize north forms of 3. MA'AT analysis of oligonucleotides and other furanose ring-containing biomolecules promises to improve current experimental models of sugar ring behavior in solution and help reveal context effects on ring conformation in more complex biologically important systems.
Collapse
Affiliation(s)
- Reagan J Meredith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556-5670, United States
| | - Margaret McGurn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556-5670, United States
| | - Christopher Euell
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556-5670, United States
| | - Peter Rutkowski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556-5670, United States
| | - Evan Cook
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556-5670, United States
| | - Ian Carmichael
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana46556-5670, United States
| | - Anthony S Serianni
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556-5670, United States
| |
Collapse
|
11
|
Lin J, Meredith RJ, Oliver AG, Carmichael I, Serianni AS. Two-bond 13C- 13C spin-coupling constants in saccharides: dependencies on exocyclic hydroxyl group conformation. Phys Chem Chem Phys 2021; 23:22912-22922. [PMID: 34617529 DOI: 10.1039/d1cp03320d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Seven doubly 13C-labeled isotopomers of methyl β-D-glucopyranoside, methyl β-D-xylopyranoside, methyl β-D-galactopyranoside, methyl β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside and methyl β-D-galactopyranosyl-(1→4)-β-D-xylopyranoside were prepared, crystallized, and studied by single-crystal X-ray crystallography and solid-state 13C NMR spectroscopy to determine experimentally the dependence of 2JC1,C3 values in aldopyranosyl rings on the C1-C2-O2-H torsion angle, θ2, involving the C2 carbon of the C1-C2-C3 coupling pathway. Using X-ray crystal structures to determine θ2 in crystalline samples and by selecting compounds that exhibit a relatively wide range of θ2 values in the crystalline state, 2JC1,C3 values measured in crystalline samples were plotted against θ2 and the resulting plot compared to that obtained from density functional theory (DFT) calculations. For θ2 values ranging from ∼90° to ∼240°, very good agreement was observed between the experimental and theoretical plots, providing strong validation of DFT-calculated spin-coupling dependencies on exocyclic C-O bond conformation involving the central carbon of geminal C-C-C coupling pathways. These findings provide new experimental evidence supporting the use of 2JCCC values as non-conventional spin-coupling constraints in MA'AT conformational modeling of saccharides in solution, and the use of NMR spin-couplings not involving coupled hydroxyl hydrogens as indirect probes of C-O bond conformation. Solvomorphism was observed in crystalline βGal-(1→4)-βGlcOCH3 wherein the previously-reported methanol solvate form was found to spontaneously convert to a monohydrate upon air-drying, leading to small but discernible conformational changes in, and a new crystalline form of, this disaccharide.
Collapse
Affiliation(s)
- Jieye Lin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| | - Reagan J Meredith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| | - Allen G Oliver
- Molecular Structure Facility, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Ian Carmichael
- The Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Anthony S Serianni
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| |
Collapse
|
12
|
Lin J, Oliver AG, Meredith RJ, Carmichael I, Serianni AS. Isopropyl 3-deoxy-α-D-ribo-hexopyranoside (isopropyl 3-deoxy-α-D-glucopyranoside): evaluating trends in structural parameters. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2021; 77:490-495. [PMID: 34350847 DOI: 10.1107/s205322962100749x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/21/2021] [Indexed: 11/10/2022]
Abstract
Isopropyl 3-deoxy-α-D-ribo-hexopyranoside (isopropyl 3-deoxy-α-D-glucopyranoside), C9H18O5, (I), crystallizes from a methanol-ethyl acetate solvent mixture at room temperature in a 4C1 chair conformation that is slightly distorted towards the C5SC1 twist-boat form. A comparison of the structural parameters in (I), methyl α-D-glucopyranoside, (II), α-D-glucopyranosyl-(1→4)-D-glucitol (maltitol), (III), and 3-deoxy-α-D-ribo-hexopyranose (3-deoxy-α-D-glucopyranose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexopyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the conformation of exocyclic substituents, such as hydroxymethyl groups, than by monodeoxygenation at C3. The structural effects observed in the crystal structures of (I)-(IV) were confirmed though density functional theory (DFT) calculations in computed structures (I)c-(IV)c. Exocyclic hydroxymethyl groups adopt the gauche-gauche (gg) conformation (H5 anti to O6) in (I) and (III), and the gauche-trans (gt) conformation (C4 anti to O6) in (II) and (IV). The O-glycoside linkage conformations in (I) and (III) resemble those observed in disaccharides containing β-(1→4) linkages.
Collapse
Affiliation(s)
- Jieye Lin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Reagan J Meredith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Ian Carmichael
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Anthony S Serianni
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| |
Collapse
|
13
|
Liu J, Yin X, Li Z, Wu X, Zheng Z, Fang J, Gu G, Wang PG, Liu X. Facile Enzymatic Synthesis of Diverse Naturally-Occurring β- d-Mannopyranosides Catalyzed by Glycoside Phosphorylases. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jing Liu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Xuefei Yin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Zitao Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaocong Wu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Zhaoxuan Zheng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Guofeng Gu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Peng G. Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xianwei Liu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
14
|
Li W, Battistel MD, Reeves H, Oh L, Yu H, Chen X, Wang LP, Freedberg DI. A combined NMR, MD and DFT conformational analysis of 9-O-acetyl sialic acid-containing GM3 ganglioside glycan and its 9-N-acetyl mimic. Glycobiology 2020; 30:787-801. [PMID: 32350512 PMCID: PMC8179627 DOI: 10.1093/glycob/cwaa040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 01/30/2023] Open
Abstract
O-Acetylation of carbohydrates such as sialic acids is common in nature, but its role is not clearly understood due to the lability of O-acetyl groups. We demonstrated previously that 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc) is a chemically and biologically stable mimic of the 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2) of the corresponding sialoglycans. Here, a systematic nuclear magnetic resonance (NMR) spectroscopic and molecular dynamics (MD) simulation study was undertaken for Neu5,9Ac2-containing GM3 ganglioside glycan (GM3-glycan) and its Neu5Ac9NAc analog. GM3-glycan with Neu5Ac as the non-O-acetyl form of Neu5,9Ac2 was used as a control. Complete 1H and 13C NMR chemical shift assignments, three-bond 1H-13C trans-glycosidic coupling constants (3JCH), accurate 1H-1H coupling constants (3JHH), nuclear Overhauser effects and hydrogen bonding detection were carried out. Results show that structural modification (O- or N-acetylation) on the C-9 of Neu5Ac in GM3 glycan does not cause significant conformational changes on either its glycosidic dihedral angles or its secondary structure. All structural differences are confined to the Neu5Ac glycerol chain, and minor temperature-dependent changes are seen in the aglycone portion. We also used Density Functional Theory (DFT) quantum mechanical calculations to improve currently used 3JHH Karplus relations. Furthermore, OH chemical shifts were assigned at -10°C and no evidence of an intramolecular hydrogen bond was observed. The results provide additional evidence regarding structural similarities between sialosides containing 9-N-acetylated and 9-O-acetylated Neu5Ac and support the opportunity of using 9-N-acetylated Neu5Ac as a stable mimic to study the biochemical role of 9-O-acetylated Neu5Ac.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, USA
| | - Marcos D Battistel
- Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Hannah Reeves
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, USA
| | - Lisa Oh
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, USA
| | - Lee-Ping Wang
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, USA
| | - Darón I Freedberg
- Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| |
Collapse
|
15
|
Meredith RJ, Woods RJ, Carmichael I, Serianni AS. Reconciling MA'AT and molecular dynamics models of linkage conformation in oligosaccharides. Phys Chem Chem Phys 2020; 22:14454-14457. [PMID: 32597425 PMCID: PMC8224179 DOI: 10.1039/d0cp01389g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MA'AT conformational models of the phi torsion angles of O-glycosidic linkages differ from those obtained from MD simulation. To determine the source of the discrepancy, MA'AT analyses were performed using DFT-derived equations obtained with and without psi constraints. The resulting phi models were essentially the same, indicating a force-field problem. Circular standard deviations (CSDs) were found to provide reliable estimates of torsional averaging.
Collapse
Affiliation(s)
- Reagan J Meredith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ian Carmichael
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | - Anthony S Serianni
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| |
Collapse
|
16
|
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces Potsdam Germany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces Potsdam Germany
- Institute of Chemistry and BiochemistryFreie Universität Berlin Berlin Germany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces Potsdam Germany
| |
Collapse
|
17
|
Zhang W, Meredith R, Pan Q, Wang X, Woods RJ, Carmichael I, Serianni AS. Use of Circular Statistics To Model αMan-(1→2)-αMan and αMan-(1→3)-α/βMan O-Glycosidic Linkage Conformation in 13C-Labeled Disaccharides and High-Mannose Oligosaccharides. Biochemistry 2019; 58:546-560. [PMID: 30605318 DOI: 10.1021/acs.biochem.8b01050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new experimental method, MA' AT analysis, has been applied to investigate the conformational properties of O-glycosidic linkages in several biologically important mannose-containing di- and oligosaccharides. Methyl α-d-mannopyranosyl-(1→2)-α-d-mannopyranoside (2), methyl α-d-mannopyranosyl-(1→3)-α-d-mannopyranoside (3), and methyl α-d-mannopyranosyl-(1→3)-β-d-mannopyranoside (4) were prepared with selective 13C-enrichment to enable the measurement of NMR scalar couplings across their internal O-glycosidic linkages. Density functional theory (DFT) was used to parameterize equations for JCH and JCC values in 2-4 that are sensitive to phi (ϕ) and psi (ψ). The experimental J-couplings and parameterized equations were treated using a circular statistics algorithm encoded in the MA' AT program. Conformations about ϕ and ψ treated using single-state von Mises models gave excellent fits to the ensembles of redundant J-couplings. Mean values and circular standard deviations (CSDs) for each linkage torsion angle ϕ (CSD) and ψ (CSD) in 2, -29° (25°) and 20° (22°); in 3, -36° (36°) and 8° (27°); in 4, -37° (34°) and 10° (26°); ϕ = H1'-C1'-O1'-CX and ψ = C1'-O1'-CX-HX (CX = aglycone carbon) were compared to histograms obtained from 1 μs aqueous molecular dynamics (MD) simulations and X-ray database statistical analysis. MA' AT-derived models of ψ were in very good agreement with the MD and X-ray data, but not those of ϕ, suggesting a need for force field revision. The effect of structural context on linkage conformation was also investigated in four selectively 13C-labeled homomannose tri- and tetrasaccharides using the MA' AT method. In the cases examined, context effects were found to be small.
Collapse
Affiliation(s)
| | | | | | - Xiaocong Wang
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 United States
| | - Robert J Woods
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 United States
| | | | | |
Collapse
|