1
|
Huo L, Zhu S, Zhao Y, Zhao X, Chu L. Photocatalytic Amine-Promoted Selective Hydrochlorination and sp 3 C-O Acylation of Alkyne-Tethered Methyl Ethers with Aldehydes. Org Lett 2025; 27:3548-3553. [PMID: 40146798 DOI: 10.1021/acs.orglett.5c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
We present a photoredox and alkylamine-assisted approach for the selective hydrochlorination and acylation of sp3 C-O bonds in alkynyl methyl ethers using aldehydes. This method leverages a cascade of radical processes─including chlorine radical addition, hydrogen atom transfer, in situ imine radical addition, and spin-center shift─to enable selective hydrochlorination of alkynes and the spontaneous cleavage of sp3 C-O bonds. The transformation accommodates a broad range of internal alkyne-tethered ethers and aldehydes, providing an efficient and streamlined pathway to chloro-alkenyl ketones. Utilizing only a photocatalyst, chloride, and propylamine under light irradiation, this strategy offers a practical and complementary alternative to previous sp3 C-O cleavage protocols.
Collapse
Affiliation(s)
- Liping Huo
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Shengqing Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Yaheng Zhao
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Xiaoyu Zhao
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Lingling Chu
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Nishio H, Miura H, Shishido T. Low-Temperature Borylation of C(sp 3)-O Bonds of Alkyl Ethers by Gold-Metal Oxide Cooperative Catalysis. J Am Chem Soc 2024; 146:34690-34701. [PMID: 39630121 DOI: 10.1021/jacs.4c13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Since ether moieties are often found not only in petrochemical products but also in natural organic molecules, the development of methods for manipulating C-O bonds of ethers is important for expanding the range of compound libraries synthesized from biomass resources, which should contribute to the goal of carbon neutrality. We report herein that gold nanoparticles supported on Lewis acidic metal oxides, namely α-Fe2O3, showed excellent catalytic activity for the reaction of dialkyl ethers and diborons, which enables the conversion of unactivated C(sp3)-O bonds to C(sp3)-B bonds at around room temperature. Various acyclic and cyclic ethers as well as a series of diborons participated in the heterogeneous gold-catalyzed borylation of unactivated C(sp3)-O bonds, to give a series of alkylboronates in high yields. Mechanistic studies corroborated that the present borylation of C(sp3)-O bonds of dialkyl ethers proceeded at the interface between gold nanoparticles and Lewis acidic metal oxides. Furthermore, adsorption IR measurements supported the notion that strong Lewis acid sites were generated at the boron atom of diborons adsorbed at the interface between Lewis acidic metal oxides and gold nanoparticles, which enabled us to ensure that the cooperation of gold nanoparticles and Lewis acidic metal oxides was responsible for the efficient transformation of unactivated C(sp3)-O bonds in ethers under mild conditions. This novel reaction technology which is specific to heterogeneous catalysts enables the activation of stable C(sp3)-O bonds of oxygenated chemical feedstock, which is beneficial for the sustainable synthesis of value-added organoboron compounds.
Collapse
Affiliation(s)
- Hidenori Nishio
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji 192-0397, Tokyo, Japan
| | - Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji 192-0397, Tokyo, Japan
- Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji 192-0397, Tokyo, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji 192-0397, Tokyo, Japan
- Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji 192-0397, Tokyo, Japan
| |
Collapse
|
3
|
Leventis T, Judge P, Zhang J, Kazmi MZH, Foston MB, Williams FJ. Boron Lewis Acid Extraction of Wood Generates High Quality Lignin. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:17210-17221. [PMID: 39611186 PMCID: PMC11600917 DOI: 10.1021/acssuschemeng.4c06206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
The separation of lignocellulose into lignin, cellulose, and hemicellulose without significantly altering the chemical structures of these component biopolymers remains a modern chemical challenge. Lignin, in particular, has potential as a highly valuable feedstock material but remains underutilized due to the difficulty of generating lignin with low modification and condensation. This work investigates the lignin-rich solids ("boron lignin") generated from a previously reported boron Lewis acid-mediated lignocellulose separation and concludes that (1) boron Lewis acid extraction removes 80-85% of carbohydrates from the original lignocellulose sample, and (2) the resulting lignin possesses a low condensation level and high similarity to native lignin structure. Residual carbohydrate assessment, depolymerization efficiency analyses, heteronuclear single quantum coherence (HSQC) and solid-state nuclear magnetic resonance (NMR) analyses are discussed, including benchmarking results with alternate lignin sources known to possess low and high condensation levels. Further, two different wood sources (white pine, a softwood, and beechwood, a hardwood) were employed to generate lignin samples. Depolymerization of a white pine-derived boron-lignin produced 47% (±9.5) of extractable monomers, which compares well to a state-of-the-art method to generate low condensed lignin (56 ± 7.8%). An unexpected instability of the oil sample was observed following hydrogenolysis of boron lignin generated from beechwood. Dramatic color changes coupled with precipitation and lowered monomer yields were observed when samples were aged (11% decrease) or concentrated (30% decrease). Based on NMR spectroscopic analyses, this instability is postulated to arise due to boron-mediated demethylation of methoxy sites on the lignin scaffold.
Collapse
Affiliation(s)
| | - Patrick Judge
- Washington
University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Jialiang Zhang
- Washington
University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | | | - Marcus B. Foston
- Washington
University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | | |
Collapse
|
4
|
Xu E, Xie F, Liu T, He J, Zhang Y. Photocatalytic, Oxidative Cleavage of C-C Bond in Lignin Models and Native Lignin. Chemistry 2024; 30:e202304209. [PMID: 38372165 DOI: 10.1002/chem.202304209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
It is challenging to realize the selective C-C bond cleavage of lignin β-O-4 linkages for production of high-value aromatic chemicals due to its intrinsic inertness and complex structure. Here we report a light-driven, chlorine-radical-based protocol to realize the oxidative C-C bond cleavage in various lignin model compounds catalyzed by commercially available TPT and CaCl2, achieving high conversion and good to high product yields at room temperature. Mechanistic studies reveal that the preferential activation of Cβ-H bond facilitates the oxidation and C-C bond cleavage of lignin β-O-4 model via chlorine radical. Furthermore, this method is also applicable to the depolymerization of natural lignin extracts, furnishing the aromatic oxygenates from the cleavage of Cα-Cβ bonds. This study provides experimental foundations to the depolymerization and valorization of lignin into high value-added aromatic compounds.
Collapse
Affiliation(s)
- Enjie Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Fuyu Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tianwei Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
5
|
Wu X, Smet E, Brandi F, Raikwar D, Zhang Z, Maes BUW, Sels BF. Advancements and Perspectives toward Lignin Valorization via O-Demethylation. Angew Chem Int Ed Engl 2024; 63:e202317257. [PMID: 38128012 DOI: 10.1002/anie.202317257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Lignin represents the largest aromatic carbon resource in plants, holding significant promise as a renewable feedstock for bioaromatics and other cyclic hydrocarbons in the context of the circular bioeconomy. However, the methoxy groups of aryl methyl ethers, abundantly found in technical lignins and lignin-derived chemicals, limit their pertinent chemical reactivity and broader applicability. Unlocking the phenolic hydroxyl functionality through O-demethylation (ODM) has emerged as a valuable approach to mitigate this need and enables further applications. In this review, we provide a comprehensive summary of the progress in the valorization of technical lignin and lignin-derived chemicals via ODM, both catalytic and non-catalytic reactions. Furthermore, a detailed analysis of the properties and potential applications of the O-demethylated products is presented, accompanied by a systematic overview of available ODM reactions. This review primarily focuses on enhancing the phenolic hydroxyl content in lignin-derived species through ODM, showcasing its potential in the catalytic funneling of lignin and value-added applications. A comprehensive synopsis and future outlook are included in the concluding section of this review.
Collapse
Affiliation(s)
- Xian Wu
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Ewoud Smet
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Francesco Brandi
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Deepak Raikwar
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Zhenlei Zhang
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
6
|
Zhu R, Mao C, Gao F, Guo Z, Li M, Xin Y, Gu Z, Zhang L. Catalytic Cleavage of the C-O Bonds in Lignin and Lignin Model Compounds by Metal Triflate Catalysts. CHEMSUSCHEM 2024; 17:e202301743. [PMID: 38206879 DOI: 10.1002/cssc.202301743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The effective cleavage of C-O bonds in linkages of lignin was one of the significant strategies promoting lignin valorization. Herein, the strategy of C-O bonds cleavage of lignin using metal triflate as the catalyst was developed. The carboxylic acid or alcohol could be used as the nucleophile to stabilize the reactive intermediates formed during the depolymerization of lignin, and the corresponding ester/ether compounds could be obtained. This catalytic system was suitable for the C-O bond cleavage in α-O-4 and β-O-4 linkages with excellent efficiency. Additionally, reaction conditions were optimized. The reaction mixture was detected by 1 H NMR, and no other byproducts were found. As for treated lignin samples, the cleavage of C-O bonds in linkages was determined by 2D HSQC NMR, the increased content of the phenol hydroxyl group was proved by FT-IR, and the reduced molecular weight was investigated by GPC. Furthermore, multiple phenolic compounds were detected by GC-MS in the reaction mixtures.
Collapse
Affiliation(s)
- Rui Zhu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Changtao Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
| | - Fang Gao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhongpeng Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Moying Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yu Xin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenghua Gu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing, 214200, P. R. China
| | - Liang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing, 214200, P. R. China
| |
Collapse
|
7
|
Wang Y, Chen M, Yang Y, Ralph J, Pan X. Efficient O-demethylation of lignin-derived aromatic compounds under moderate conditions. RSC Adv 2023; 13:5925-5932. [PMID: 36816077 PMCID: PMC9936356 DOI: 10.1039/d3ra00245d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Lignin is a potential feedstock to produce renewable aromatic chemicals. However, lignin-derived aromatics are heavily methoxylated, which affects their reactivity in some downstream valorization attempts. Herein, we report an efficient method for the demethylation of the aromatics derived from lignin depolymerization using acidic concentrated lithium bromide (ACLB) under moderate conditions (e.g., 1.5 M HCl, 110 °C, and 2 h). Aromatics with one or two methoxy groups (G-type and S-type), alkyl hydroxyl and carbonyl groups, and electron-donating and electron-withdrawing substituents were used to investigate the demethylation mechanisms. S-type aromatics were demethylated faster than their G-type analogs. Alkyl hydroxyl groups were brominated under the conditions. Carbonyl groups (aldehydes and ketones) promoted unwelcome condensation. Electron-donating substituents promoted demethylation, whereas electron-withdrawing substituents retarded the demethylation. An ortho-carboxylic group enhanced the demethylation because of the formation of a stable intermediate.
Collapse
Affiliation(s)
- Yueqing Wang
- Department of Biological Systems Engineering, University of Wisconsin-Madison 460 Henry Mall Madison WI 53706 USA
| | - Mingjie Chen
- Wisconsin Energy Institute, University of Wisconsin–Madison1552 University AvenueMadisonWI 53726USA
| | - Yang Yang
- Department of Chemistry, University of Wisconsin–Madison1101 University AvenueMadisonWI 53706USA
| | - John Ralph
- Wisconsin Energy Institute, University of Wisconsin–Madison1552 University AvenueMadisonWI 53726USA
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison 460 Henry Mall Madison WI 53706 USA
| |
Collapse
|
8
|
Xiong X, Zhang H, Lai SL, Gao J, Gao L. Lignin modified by deep eutectic solvents as green, reusable, and bio-based catalysts for efficient chemical fixation of CO2. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Wang T, Xu H, He J, Zhang Y. MPV reduction of ethyl levulinate to γ-valerolactone by the biomass-derived chitosan-supported Zr catalyst. NEW J CHEM 2020. [DOI: 10.1039/d0nj02667k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomass-derived chitosan-supported Zr catalyst with dual acid–base properties exhibits highly efficient performance towards MPV reduction of ethyl levulinate to γ-valerolactone.
Collapse
Affiliation(s)
- Tianlong Wang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Hai Xu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
10
|
Kazmi MZH, Karmakar A, Michaelis VK, Williams FJ. Separation of cellulose/hemicellulose from lignin in white pine sawdust using boron trihalide reagents. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|