1
|
Shichijo K, Tanaka M, Kametani Y, Shiota Y, Fujitsuka M, Shimakoshi H. B 12-Catalyzed Carbonylation of Carbon Tetrahalides: Using a Broad Range of Visible Light to Access Diverse Carbonyl Compounds. Chemistry 2025; 31:e202403663. [PMID: 39484682 PMCID: PMC11724252 DOI: 10.1002/chem.202403663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/03/2024]
Abstract
Visible-light-driven organic synthesis is a green and sustainable method for producing fine chemicals and is highly desirable at both laboratory and industrial scales. In this study, we developed a broad-range (including the red region) visible-light-driven carbonylation of CCl4, CBr4, and CBr3F with nucleophiles, such as amines and alcohols, using a B12-Mg2+/TiO2 hybrid catalyst. Carbonyl molecules such as ureas, carbamates, carbonate esters, and carbamoyl fluorides were synthesized with high selectivity and efficiency under mild conditions. Diffuse reflectance UV-vis spectroscopy, femtosecond time-resolved diffuse reflectance spectroscopy, and density functional theory calculations revealed the reaction mechanism is a combination of SN2 and single-electron transfer. This is a rare example of a low-energy, red-light-driven photocatalysis, which has been a highly desired organic reaction in recent years. We believe that this study provides a general platform to access diverse carbonyl molecules and could promote photocatalytic carbonylation reactions on a pilot scale.
Collapse
Affiliation(s)
- Keita Shichijo
- Department of Chemistry and BiochemistryGraduate School of EngineeringKyushu UniversityNishi-ku, MotookaFukuoka 744, 819–0395Japan
| | - Miho Tanaka
- Department of Chemistry and BiochemistryGraduate School of EngineeringKyushu UniversityNishi-ku, MotookaFukuoka 744, 819–0395Japan
| | - Yohei Kametani
- Institute for Materials Chemistry and EngineeringKyushu UniversityNishi-ku, MotookaFukuoka 744, 819–0395Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and EngineeringKyushu UniversityNishi-ku, MotookaFukuoka 744, 819–0395Japan
| | - Mamoru Fujitsuka
- SANKEN (The Institute of Scientific and Industrial Research)Osaka University,Mihogaoka 8–1Ibaraki, Osaka567-0047Japan
| | - Hisashi Shimakoshi
- Department of Chemistry and BiochemistryGraduate School of EngineeringKyushu UniversityNishi-ku, MotookaFukuoka 744, 819–0395Japan
| |
Collapse
|
2
|
Hu G, Doerksen RS, Ambler BR, Krische MJ. Total Synthesis of the Phenylnaphthacenoid Type II Polyketide Antibiotic Formicamycin H via Regioselective Ruthenium-Catalyzed Hydrogen Auto-Transfer [4 + 2] Cycloaddition. J Am Chem Soc 2024; 146:26351-26359. [PMID: 39265189 PMCID: PMC11470536 DOI: 10.1021/jacs.4c09068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The first total synthesis of the pentacyclic phenylnaphthacenoid type II polyketide antibiotic formicamycin H is described. A key feature of the synthesis involves the convergent, regioselective assembly of the tetracyclic core via ruthenium-catalyzed α-ketol-benzocyclobutenone [4 + 2] cycloaddition. Double dehydration of the diol-containing cycloadduct provides an achiral enone, which upon asymmetric nucleophilic epoxidation and further manipulations delivers the penultimate tetracyclic trichloride in enantiomerically enriched form. Subsequent chemo- and atroposelective Suzuki cross-coupling of the tetracyclic trichloride introduces the E-ring to complete the total synthesis. Single-crystal X-ray diffraction analyses of two model compounds suggest that the initially assigned stereochemistry of the axially chiral C6-C7 linkage may require revision.
Collapse
Affiliation(s)
| | | | - Brett R. Ambler
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| |
Collapse
|
3
|
Kim SY, Lim HN. Methyl Pyruvate Oxime as a Carbonyl Synthon: Synthesis of Ureas, Carbamates, Thiocarbamates, and Anilides. Org Lett 2024; 26:3850-3854. [PMID: 38683648 DOI: 10.1021/acs.orglett.4c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A new strategy for the synthesis of unsymmetrical ureas, carbamates, thiocarbamates, and anilides was developed with methyl pyruvate oxime as the carbonyl synthon. The intrinsic reactivity of the reagent enabled consecutive disubstitution involving direct amidation and one-pot deoximative substitution with various nucleophiles. The utility of the method was demonstrated with the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Seo Yeon Kim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
4
|
Higashimura I, Shele M, Akamatsu T, Ohmura R, Liang F, Okazoe T, Tsuda A. Photo-on-Demand In Situ One-Pot Synthesis of Carbonate Esters from Tetrachloroethylene. J Org Chem 2024; 89:1864-1872. [PMID: 38198222 DOI: 10.1021/acs.joc.3c02588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The present study reports a novel one-pot synthesis of carbonate esters with photo-oxidized tetrachloroethylene (TCE). Acyclic and cyclic alkyl carbonate esters could be synthesized through base-promoted condensation reactions of alcohols with the photo-oxidized TCE that was prepared by irradiation with UV-C or visible light under O2 or O2/Cl2 (∼4%) bubbling, respectively. Cyclic carbonate esters could also be synthesized from a solution of TCE and the ethylene glycol derivative by irradiation of UV-C light under O2 bubbling. With respect to the reaction mechanism, the photochemical oxidation of TCE mainly provides the highly toxic and corrosive trichloroacetyl chloride (TCAC), which then reacts in situ with the alcohol to give the corresponding trichloroacetic acid ester (TCAE). The subsequent intermolecular or intramolecular base-catalyzed condensation reaction of TCAE with or without the addition of alcohol leads to elimination of CHCl3 in the corresponding carbonate ester. The present reactions enable the in situ one-pot synthesis of a variety of alkyl carbonate esters under mild conditions without the direct handling of TCAC. This is beneficial in terms of safety, cost, and reduced environmental impact.
Collapse
Affiliation(s)
- Ikkei Higashimura
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Muge Shele
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Toshiki Akamatsu
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Ryota Ohmura
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Fengying Liang
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Okazoe
- Materials Integration Laboratories, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Akihiko Tsuda
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
5
|
Shang S, Shao W, Luo X, Zuo M, Wang H, Zhang X, Xie Y. Facet Engineering in Constructing Lewis Acid-Base Pairs for CO 2 Cycloaddition to High Value-Added Carbonates. Research (Wash D C) 2022; 2022:9878054. [PMID: 36320636 PMCID: PMC9590269 DOI: 10.34133/2022/9878054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 11/12/2022] Open
Abstract
Cycloaddition of epoxides with CO2 to synthesis cyclic carbonates is an atom-economic pathway for CO2 utilization with promising industry application value, while its efficiency was greatly inhibited for the lack of highly active catalytic sites. Herein, by taking BiOX (X = Cl, Br) with layered structure for example, we proposed a facet engineering strategy to construct Lewis acid-base pairs for CO2 cycloaddition, where the typical BiOBr with (010) facets expose surface Lewis acid Bi sites and Lewis base Br sites simultaneously. By the combination of in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and theoretical calculations, the oxygen atom of the epoxide is interacted with the Lewis acid Bi site to activate the ternary ring, then facilitates the attack of the carbon atom by the Lewis base Br site for the ring-opening of the epoxide, which is the rate-determining step in the cycloaddition reaction. As a result, the BiOBr-(010) with rich surface Lewis acid-base pairs showed a high conversion of 85% with 100% atomic economy in the synthesis of cyclic-carbonates without any cocatalyst. This study provides a model structure for CO2 cycloaddition to high value-added long chain chemicals.
Collapse
Affiliation(s)
- Shu Shang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wei Shao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Luo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ming Zuo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hui Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
6
|
Hatsumura S, Hashimoto Y, Hosokawa S, Nagao A, Eda K, Harada H, Ishitsuka K, Okazoe T, Tsuda A. Reactivity and Product Selectivity of Fluoroalkyl Carbonates in Substitution Reactions with Primary Alcohols and Amines. J Org Chem 2022; 87:11572-11582. [PMID: 35981240 DOI: 10.1021/acs.joc.2c01180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study reports a systematic investigation of the substitution reactions of a series of symmetric and unsymmetric fluoroalkyl carbonates with primary alcohols or amines. The reactivity of the haloalkyl carbonate depends mainly on the electrophilicity and steric crowdedness of the carbonyl group and the leaving ability of the haloalkyl alcohols. Diethyl carbonate as a reference substrate showed no reaction with the alcohol or amine. However, bis(2,2,2-trifluoroethyl) carbonate [(F3-EtO)2CO] having electron-withdrawing trifluoroethyl groups enabled substitution reactions, with relatively higher reactivities to those for diphenyl carbonate [(PhO)2CO]. Furthermore, (F6-iPrO)2CO, bearing two sets of hexafluoroisopropyl groups, showed dramatic acceleration of the reactions, in which the observed reactivities were similar to those for bis(perfluorophenyl) carbonate [(F5-PhO)2CO]. The electrophilicity of the carbonyl group and the leaving ability of the alcohols in the series of haloalkyl carbonates were found to be correlated with the wavenumbers of their carbonyl groups in IR spectra and pKa for the eliminated alcohols, respectively. Since the eliminated fluoroalkyl alcohols exhibit weak affinity with the organic products and have lower boiling points owing to a characteristic property of the fluoroalkyl group, they could be readily removed from the product by simple evaporation below 100 °C with or without reduced pressure.
Collapse
Affiliation(s)
- Shuto Hatsumura
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yuka Hashimoto
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Sasuga Hosokawa
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Akihiro Nagao
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kazuo Eda
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Hirofumi Harada
- Innovative Technology Laboratories, AGC Inc, 1-1 Suehiro-cho Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Kei Ishitsuka
- Innovative Technology Laboratories, AGC Inc, 1-1 Suehiro-cho Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Takashi Okazoe
- Materials Integration Laboratories, AGC Inc, 1-1 Suehiro-cho Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Akihiko Tsuda
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
7
|
Qiao C, Shi W, Brandolese A, Benet‐Buchholz J, Escudero‐Adán EC, Kleij AW. A Novel Catalytic Route to Polymerizable Bicyclic Cyclic Carbonate Monomers from Carbon Dioxide. Angew Chem Int Ed Engl 2022; 61:e202205053. [PMID: 35441777 PMCID: PMC9323429 DOI: 10.1002/anie.202205053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 01/18/2023]
Abstract
A new catalytic route has been developed for the coupling of epoxides and CO2 affording polymerizable six-membered bicyclic carbonates. Cyclic epoxides equipped with a β-positioned OH group can be transformed into structurally diverse bicyclic cyclic carbonates in good yields and with high selectivity. Key to the chemo-selectivity is the difference between the reactivity of syn- and anti-configured epoxy alcohols, with the latter leading to six-membered ring carbonate formation in the presence of a binary AlIII aminotriphenolate complex/DIPEA catalyst. X-ray analyses show that the conversion of the syn-configured substrate evolves via a standard double inversion pathway providing a five-membered carbonate product, whereas the anti-isomer allows for activation of the oxirane unit of the substrate opposite to the pendent alcohol. The potential use of these bicyclic products is shown in ring-opening polymerization offering access to rigid polycarbonates with improved thermal resistance.
Collapse
Affiliation(s)
- Chang Qiao
- Institute of Chemical Research of Catalonia (ICIQ)the Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Universitat Rovira i VirgiliC/Marcel ⋅ lí Domingo s/n43007TarragonaSpain
| | - Wangyu Shi
- Institute of Chemical Research of Catalonia (ICIQ)the Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Universitat Rovira i VirgiliC/Marcel ⋅ lí Domingo s/n43007TarragonaSpain
| | - Arianna Brandolese
- Institute of Chemical Research of Catalonia (ICIQ)the Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
| | - Jordi Benet‐Buchholz
- Institute of Chemical Research of Catalonia (ICIQ)the Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
| | - Eduardo C. Escudero‐Adán
- Institute of Chemical Research of Catalonia (ICIQ)the Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ)the Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Catalan Institute of Research and Advanced Studies (ICREA)Pg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
8
|
Jiang Z, Wang H, Shan L, Zheng R, Zhao X, Liao Z, Guo L. Preparation of Temperature-Controlled Heteropolyacid Ionic Liquids and Their Application for Synthesis of Diphenyl Carbonate. Catal Letters 2022. [DOI: 10.1007/s10562-022-04068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Asahara H, Takao N, Moriguchi M, Inoue T, Ohkubo K. Visible-light-induced phosgenation of amines by chloroform oxygenation using chlorine dioxide. Chem Commun (Camb) 2022; 58:6176-6179. [PMID: 35474124 DOI: 10.1039/d2cc01336c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the visible-light-induced in situ preparation of COCl2 through the oxygenation of chloroform in the presence of chlorine dioxide, which leads to the safe constructions of carbamoyl chlorides with good-to-high yields and wide substrate scopes. In addition, this method can also be applied to the synthesis of various carbonates.
Collapse
Affiliation(s)
- Haruyasu Asahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. .,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nozomi Takao
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Maiko Moriguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. .,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Qiao C, Shi W, Brandolese A, Benet‐Buchholz J, Escudero‐Adán EC, Kleij AW. A Novel Catalytic Route to Polymerizable Bicyclic Cyclic Carbonate Monomers from Carbon Dioxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chang Qiao
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Universitat Rovira i Virgili C/Marcel ⋅ lí Domingo s/n 43007 Tarragona Spain
| | - Wangyu Shi
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Universitat Rovira i Virgili C/Marcel ⋅ lí Domingo s/n 43007 Tarragona Spain
| | - Arianna Brandolese
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Jordi Benet‐Buchholz
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Eduardo C. Escudero‐Adán
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
11
|
Muzyka C, Monbaliu JCM. Perspectives for the Upgrading of Bio-Based Vicinal Diols within the Developing European Bioeconomy. CHEMSUSCHEM 2022; 15:e202102391. [PMID: 34919322 DOI: 10.1002/cssc.202102391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The previous decade has witnessed a drastic increase of European incentives aimed at pushing forward the transition from an exclusively petro-based economy toward a strong and homogeneous bio-based economy. Since 2012, numerous programs have been developed to stimulate and promote research and innovation relying on sustainable and renewable resources. Terrestrial biomass is a virtually infinite reservoir of biomacromolecules, the biorefining of which provides platform molecules of low complexity yet with tremendous industrial potential. Among such bio-based platform molecules, polyols and, more specifically, molecules featuring vicinal diols have gained tremendous interest and have stimulated an increasing research effort from the chemistry and chemical engineering communities. This Review revolves around the most promising process conditions and technologies reported since 2012 that specifically target bio-based vicinal diols and promote their transformation into value-added molecules of wide industrial interest, such as olefins, epoxides, cyclic carbonates, and ketals.
Collapse
Affiliation(s)
- Claire Muzyka
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, Quartier Agora Allée du six Aout, 13, B-4000, Liège (Sart Tilman), Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, Quartier Agora Allée du six Aout, 13, B-4000, Liège (Sart Tilman), Belgium
| |
Collapse
|
12
|
En Route to CO2-Based (a)Cyclic Carbonates and Polycarbonates from Alcohols Substrates by Direct and Indirect Approaches. Catalysts 2022. [DOI: 10.3390/catal12020124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This review is dedicated to the state-of-the art routes used for the synthesis of CO2-based (a)cyclic carbonates and polycarbonates from alcohol substrates, with an emphasis on their respective main advantages and limitations. The first section reviews the synthesis of organic carbonates such as dialkyl carbonates or cyclic carbonates from the carbonation of alcohols. Many different synthetic strategies have been reported (dehydrative condensation, the alkylation route, the “leaving group” strategy, the carbodiimide route, the protected alcohols route, etc.) with various substrates (mono-alcohols, diols, allyl alcohols, halohydrins, propargylic alcohols, etc.). The second section reviews the formation of polycarbonates via the direct copolymerization of CO2 with diols, as well as the ring-opening polymerization route. Finally, polycondensation processes involving CO2-based dimethyl and diphenyl carbonates with aliphatic and aromatic diols are described.
Collapse
|
13
|
Gujjarappa R, Vodnala N, Musib D, Malakar CC. Organocatalytic Decarboxylation and Dual C(sp
3
)−H Bond Functionalization Toward Facile Access to Divergent 2,6‐Diarylpyridines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
- Department of Chemistry Indian Institute of Technology Delhi Multi-storey building, HauzKhas New Delhi 110016 India
| | - Dulal Musib
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| |
Collapse
|
14
|
Jung HJ, Park S, Lee HS, Shin HG, Yoo Y, Baral ER, Lee JH, Kwak J, Kim JG. Chemical Upcycling of Waste Poly(bisphenol A carbonate) to 1,4,2-Dioxazol-5-ones and One-Pot C-H Amidation. CHEMSUSCHEM 2021; 14:4301-4306. [PMID: 34129287 DOI: 10.1002/cssc.202100885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Chemical upcycling of poly(bisphenol A carbonate) (PC) was achieved in this study with hydroxamic acid nucleophiles, giving rise to synthetically valuable 1,4,2-dioxazol-5-ones and bisphenol A. Using 1,5,7-triazabicyclo[4.4.0]-dec-5-ene (TBD), non-green carbodiimidazole or phosgene carbonylation agents used in conventional dioxazolone synthesis were successfully replaced with PC, and environmentally harmful bisphenol A was simultaneously recovered. Assorted hydroxamic acids exhibited good-to-excellent efficiencies and green chemical features, promising broad synthetic application scope. In addition, a green aryl amide synthesis process was developed, involving one-pot depolymerization from polycarbonate to dioxazolone followed by rhodium-catalyzed C-H amidation, including gram-scale examples with used compact discs.
Collapse
Affiliation(s)
- Hyun Jin Jung
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sora Park
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun Sub Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun Gyu Shin
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yeji Yoo
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Ek Raj Baral
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Jaesung Kwak
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Deajeon, 34114, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
15
|
Rezaei A, Khavari S, Sami M. Incorporation of thyme essential oil into the β-cyclodextrin nanosponges: Preparation, characterization and antibacterial activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Hashimoto Y, Hosokawa S, Liang F, Suzuki Y, Dai N, Tana G, Eda K, Kakiuchi T, Okazoe T, Harada H, Tsuda A. Photo-on-Demand Base-Catalyzed Phosgenation Reactions with Chloroform: Synthesis of Arylcarbonate and Halocarbonate Esters. J Org Chem 2021; 86:9811-9819. [PMID: 34182754 DOI: 10.1021/acs.joc.1c01210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbonate esters are utilized as solvents and reagents for C1 building blocks in organic synthesis. This study reports a novel photo-on-demand in situ synthesis of carbonate esters with CHCl3 solutions containing a mixture of an aromatic or haloalkyl alcohol having relatively high acidity, and an organic base. We found that the acid-base interaction of the alcohol and base in the CHCl3 solution plays a key role in enabling the photochemical reaction. This reaction allows practical syntheses of diphenyl carbonate derivatives, haloalkyl carbonates, and polycarbonates, which are important chemicals and materials in industry.
Collapse
Affiliation(s)
- Yuka Hashimoto
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Sasuga Hosokawa
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Fengying Liang
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yuto Suzuki
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Namin Dai
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Gegen Tana
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kazuo Eda
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Toshifumi Kakiuchi
- Innovative Technology Laboratories, AGC Inc., Suehiro 1-1 Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Takashi Okazoe
- Materials Integration Laboratories, AGC Inc., Suehiro 1-1 Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Hidefumi Harada
- Tokyo Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Nijyuku 6-1-1 Katsushika-ku, Tokyo 125-8601, Japan
| | - Akihiko Tsuda
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
17
|
Assaf KI, Qaroush AK, Okashah IK, Al-Qaisi FM, Alsoubani F, Eftaiha AF. Activation of β-diketones for CO 2 capture and utilization. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00278c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-Diketones are used for CO2 sequestration and utilization which was made possible due to their dual Brønsted acid/Lewis base character upon activation using a superbase,1,8-diazabicyclo[5.4.0]undec-7-ene or zinc bromide, respectively.
Collapse
Affiliation(s)
- Khaleel I. Assaf
- Department of Chemistry, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | | | - Ibrahim K. Okashah
- Department of Chemistry, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Feda'a M. Al-Qaisi
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Fatima Alsoubani
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Ala'a F. Eftaiha
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| |
Collapse
|
18
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
19
|
Shen W, Ge Q, Gu K, Nie Y, Jiao L, Zhu Z, Fang Y. Stable Organic Titanium Catalysts and Reactive Distillation Used for the Transesterification of Dimethyl Carbonate with Phenol. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weihua Shen
- East China University of Science and Technology State Key Laboratory of Chemical Engineering School of Chemical Engineering 200237 Shanghai China
| | - Qing Ge
- East China University of Science and Technology State Key Laboratory of Chemical Engineering School of Chemical Engineering 200237 Shanghai China
| | - Kaijie Gu
- East China University of Science and Technology State Key Laboratory of Chemical Engineering School of Chemical Engineering 200237 Shanghai China
| | - Yingying Nie
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd. Shaanxi Coal Chemical Building, 2, Jinye Road, Xi'an Hi-tech Development Zone 710070 Shaanxi Province China
| | - Linyu Jiao
- Northwest University School of Chemical Engineering No. 229 Taibai North Road 710069 Xi'an China
| | - Zhiqing Zhu
- East China University of Science and Technology State Key Laboratory of Chemical Engineering School of Chemical Engineering 200237 Shanghai China
| | - Yunjin Fang
- East China University of Science and Technology State Key Laboratory of Chemical Engineering School of Chemical Engineering 200237 Shanghai China
| |
Collapse
|
20
|
Lai S, Gao J, Zhang H, Cheng L, Xiong X. Luffa sponge supported dendritic imidazolium ILs with high-density active sites as highly efficient and environmentally friendly catalysts for CO2 chemical fixation. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Gujjarappa R, Vodnala N, Reddy VG, Malakar CC. Niacin as a Potent Organocatalyst towards the Synthesis of Quinazolines Using Nitriles as C-N Source. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry; National Institute of Technology Manipur, Langol; 795004 Imphal Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry; National Institute of Technology Manipur, Langol; 795004 Imphal Manipur India
| | - Velma Ganga Reddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC); School of Science; RMIT University; GPO Box 2476 3001 Melbourne Australia
| | - Chandi C. Malakar
- Department of Chemistry; National Institute of Technology Manipur, Langol; 795004 Imphal Manipur India
| |
Collapse
|
22
|
Dobi Z, Reddy BN, Renders E, Van Raemdonck L, Mensch C, De Smet G, Chen C, Bheeter C, Sergeyev S, Herrebout WA, Maes BUW. Carbamate Synthesis Using a Shelf-Stable and Renewable C 1 Reactant. CHEMSUSCHEM 2019; 12:3103-3114. [PMID: 30921504 DOI: 10.1002/cssc.201900406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/18/2019] [Indexed: 06/09/2023]
Abstract
4-Propylcatechol carbonate is a shelf-stable, renewable C1 reactant. It is easily prepared from renewable 4-propylcatechol (derived from wood) and dimethyl carbonate (derived from CO2 ) using a reactive distillation system. In this work, the 4-propylcatechol carbonate is used for the two-step synthesis of carbamates under mild reaction conditions. In the first step, 4-propylcatechol carbonate is treated with an alcohol at 50-80 °C in the presence of a Lewis acid catalyst, such as Zn(OAc)2 ⋅2 H2 O. With liquid alcohols, no solvent is used and with solid alcohols 2-methyltetrahydrofuran is used as solvent. In the second step, the alkyl 2-hydroxy-propylphenyl carbonate intermediates obtained react with amines at room temperature in 2-methyltetrahydrofuran, forming the target carbamates and the byproduct 4-propylcatechol, which can be recycled into a carbonate reactant.
Collapse
Affiliation(s)
- Zoltán Dobi
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - B Narendraprasad Reddy
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Evelien Renders
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Laurent Van Raemdonck
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Carl Mensch
- Molecular Spectroscopy, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Gilles De Smet
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Chen Chen
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Charles Bheeter
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sergey Sergeyev
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Wouter A Herrebout
- Molecular Spectroscopy, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
23
|
Wang S, Niu H, Guo M, Wang J, Chen T, Wang G. Effect of zirconia polymorph on the synthesis of diphenyl carbonate over supported lead catalysts. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Park S, Kim JG. Mechanochemical synthesis of poly(trimethylene carbonate)s: an example of rate acceleration. Beilstein J Org Chem 2019; 15:963-970. [PMID: 31164933 PMCID: PMC6541340 DOI: 10.3762/bjoc.15.93] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Mechanochemical polymerization is a rapidly growing area and a number of polymeric materials can now be obtained through green mechanochemical synthesis. In addition to the general merits of mechanochemistry, such as being solvent-free and resulting in high conversions, we herein explore rate acceleration under ball-milling conditions while the conventional solution-state synthesis suffer from low reactivity. The solvent-free mechanochemical polymerization of trimethylene carbonate using the organocatalysts 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) are examined herein. The polymerizations under ball-milling conditions exhibited significant rate enhancements compared to polymerizations in solution. A number of milling parameters were evaluated for the ball-milling polymerization. Temperature increases due to ball collisions and exothermic energy output did not affect the polymerization rate significantly and the initial mixing speed was important for chain-length control. Liquid-assisted grinding was applied for the synthesis of high molecular weight polymers, but it failed to protect the polymer chain from mechanical degradation.
Collapse
Affiliation(s)
- Sora Park
- Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University, Jeon-Ju, Jeollabuk-do, 54896, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University, Jeon-Ju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
25
|
Dindarloo Inaloo I, Majnooni S. Carbon dioxide utilization in the efficient synthesis of carbamates by deep eutectic solvents (DES) as green and attractive solvent/catalyst systems. NEW J CHEM 2019. [DOI: 10.1039/c9nj02810b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep eutectic solvents as a green solvent/catalyst system for directly synthesizing carbamates from amines, CO2 and alkyl halides.
Collapse
Affiliation(s)
| | - Sahar Majnooni
- Department of Chemistry
- University of Isfahan
- Isfahan 81746-73441
- Iran
| |
Collapse
|
26
|
Gérardy R, Estager J, Luis P, Debecker DP, Monbaliu JCM. Versatile and scalable synthesis of cyclic organic carbonates under organocatalytic continuous flow conditions. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01659g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A scalable intensified flow process for the preparation of cyclic organic carbonates relying on a cheap ammonium organocatalyst.
Collapse
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis
- Research Unit MolSys
- University of Liège
- B-4000 Liège (Sart Tilman)
- Belgium
| | | | - Patricia Luis
- Materials & Process Engineering (iMMC-IMAP)
- UCLouvain
- B-1348 Louvain-la-Neuve
- Belgium
| | - Damien P. Debecker
- Institute of Condensed Matter and Nanosciences
- UCLouvain
- B-1348 Louvain-la-Neuve
- Belgium
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis
- Research Unit MolSys
- University of Liège
- B-4000 Liège (Sart Tilman)
- Belgium
| |
Collapse
|