1
|
Gong XP, Yue H, Liang N, Luan YY, Jiao RQ, Chen X, Huang YC, Ding T, Zhang BS, Liu XY, Liang YM. Palladium-Catalyzed Meta C─H Alkoxylation and Amidation via Polarity Reversal of Nucleophilic Reagents. Angew Chem Int Ed Engl 2025; 64:e202501648. [PMID: 40022606 DOI: 10.1002/anie.202501648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/28/2025] [Indexed: 03/03/2025]
Abstract
Norbornene-mediated remote metaselective C─H functionalization of arenes have been limited to relatively weakly electronegative and "soft" species, such as aryl, alkyl, and alkylamino moieties. Herein, we describe the first example of the use of a nucleophilic reagent, such as an alcohol or amide, to replace the electrophilic reagent during the palladium-catalyzed meta C─H alkoxylation or amidation reaction of an arene. The reaction conditions are mild and highly site-selective, thereby facilitating the direct introduction of natural products or drug molecules containing hydroxyl or amido groups at the meta positions of arenes. In addition, the directing group is rapidly convertible into the corresponding aldehyde, which further enhances the applicability of the reaction. Control experiments and density functional theory (DFT) calculations revealed that alcohol and amide polarity reversal induced by hypervalent iodine reagents and the subsequent formation of a Pd(IV) intermediate via the oxidative addition of the aryl-norbornyl-palladacycle intermediate are crucial for promoting the entire catalytic reaction cycle.
Collapse
Affiliation(s)
- Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Heng Yue
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Ning Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Yu-Yong Luan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Yan-Chong Huang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Tian Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Bo-Sheng Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Zuo H, Kemper S, Klare HFT, Oestreich M. Ionic Remote α-C-H Allenylation of Silyl Ethers Involving a [1,5]-Hydride Shift Promoted by Silylium-Ion Regeneration. J Am Chem Soc 2025; 147:5426-5431. [PMID: 39885766 PMCID: PMC11826908 DOI: 10.1021/jacs.4c18137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
A silylium-ion-promoted α-C-H allenylation of silyl ethers tethered to an internal alkyne is described. The actual intermolecular allenylation event occurs after the trans-selective hydrosilylation of the alkyne, where an in situ-generated β-silicon-stabilized vinyl cation engages in an intramolecular [1,5]-hydride shift. This process transforms the silyl ether into a silylcarboxonium ion, which reacts with propargylsilanes as nucleophiles, formed by the rapid silylium-ion-catalyzed isomerization of allenylsilanes. As part of the allenylation step, the propagating silylium-ion electrophile is regenerated, thereby closing the catalytic cycle. An allylsilane is also applicable in this transformation, producing the corresponding α-C-H allylation product in high yield.
Collapse
Affiliation(s)
- Honghua Zuo
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Sebastian Kemper
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
3
|
Tian Q, Ge J, Liu Y, Wu X, Li Z, Cheng G. Palladium-Catalyzed Enantioselective Synthesis of P(V)-Stereogenic Compounds via Desymmetric Annulation of Prochiral Phosphinamides and Aryl Iodides. Org Lett 2025; 27:121-128. [PMID: 39791235 DOI: 10.1021/acs.orglett.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The enantioselective synthesis of P(V)-stereogenic compounds has emerged as an interesting research topic primarily due to their significant biological activity and broad application prospects. Herein, we disclose a method for the construction of P(V)-stereogenic compounds from prochiral phosphinamides and aryl iodides via palladium- and chiral norbornene-catalyzed desymmetric annulation. The P(V)-stereogenic compounds were formed with a broad scope with excellent enantiomeric excesses. It is noteworthy that the synthetic value of this procedure was proven by a variety of transition metal-catalyzed cross-coupling reactions using the C-Br bond on the product as a versatile linchpin electrophile.
Collapse
Affiliation(s)
- Qingyu Tian
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jin Ge
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yaopeng Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xi Wu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhenghao Li
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
4
|
Li Z, Li J, Fan J, Ding Y, Guo H, Cheng G. Palladium-Catalyzed Dual C-H Arylation/Cyclization Reaction of Iodoferrocenes with ortho-Bromobenzamides for the Construction of Arylated Isoquinolone-Fused Ferrocenes. J Org Chem 2024; 89:18280-18290. [PMID: 39663821 DOI: 10.1021/acs.joc.4c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
We reported a palladium/norbornene-catalyzed dual intermolecular C-H arylation/intramolecular cyclization reaction of iodoferrocenes with ortho-bromobenzamides, enabling the formation of arylated isoquinolone-fused ferrocenes in a straightforward and effective manner. This method has a broad substrate scope and good functional group compatibility, while the gram-scale reaction demonstrates the practicality of this method.
Collapse
Affiliation(s)
- Zhiyong Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingyu Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingwen Fan
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yuhao Ding
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Hailin Guo
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
5
|
Zuo H, Qu ZW, Kemper S, Klare HFT, Grimme S, Oestreich M. Silylium-Ion-Promoted (3 + 2) Annulation of Allenylsilanes with Internal Alkynes Involving a Pentadienyl-to-Allyl Cation Electrocyclization. J Am Chem Soc 2024; 146:31377-31383. [PMID: 39503618 PMCID: PMC11583337 DOI: 10.1021/jacs.4c09885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024]
Abstract
A (3 + 2) annulation of allenyl- and, after rapid isomerization, propargylsilanes with internal 1-aryl-1-alkynes to form 4-methylenecyclopentenes is reported. The reaction is initiated by a silylium ion, and the catalytic cycle is subsequently maintained by the self-regeneration of the silylium-ion promoter. Unlike the well-established Danheiser annulation, where the allenylsilane serves as a three-carbon synthon, the present transformation engages the allenylsilane as a two-carbon synthon. Experimental observations and DFT calculations unveil a reaction cascade involving various β-silicon-stabilized carbocations, where a pentadienyl-to-allyl cation electrocyclization is the key step.
Collapse
Affiliation(s)
- Honghua Zuo
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Zheng-Wang Qu
- Mulliken
Center for Theoretical Chemistry, Clausius-Institut für Physikalische
und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität
Bonn, Beringstraße
4, 53115 Bonn, Germany
| | - Sebastian Kemper
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Hendrik F. T. Klare
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Stefan Grimme
- Mulliken
Center for Theoretical Chemistry, Clausius-Institut für Physikalische
und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität
Bonn, Beringstraße
4, 53115 Bonn, Germany
| | - Martin Oestreich
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
6
|
Tian Q, Ge J, Liu Y, Wu X, Li Z, Cheng G. Solvent-Controlled Enantiodivergent Construction of P(V)-Stereogenic Molecules via Palladium-Catalyzed Annulation of Prochiral N-Aryl Phosphonamides with Aromatic Iodides. Angew Chem Int Ed Engl 2024; 63:e202409366. [PMID: 38979942 DOI: 10.1002/anie.202409366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
In this work, we describe an efficient and modular method for enantiodivergent accessing P(V)-stereogenic molecules by utilizing the catalytic atroposelective Catellani-type C-H arylation/desymmetric intramolecular N-arylation cascade reaction. The enantioselectivity of this protocol was proved to be tuned by the polarity of the solvent, thus providing a wide range of both chiral P(V)-stereogenic enantiomers in moderate to good yields with good to excellent enantiomeric excesses. Noteworthy is that the strategy developed herein represents an unprecedented example of solvent-dictated inversion of the enantioselectivity of P(V)-stereogenic compounds.
Collapse
Affiliation(s)
- Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jin Ge
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yaopeng Liu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xi Wu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zhenghao Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
7
|
Zhang BS, Deng BJ, Zhi YX, Guo TJ, Wang YM, Gou XY, Quan ZJ, Wang XC, Liang YM. A switch strategy for the synthesis of C4-ethylamine indole and C7-aminoindoline via controllable carbon elimination. Chem Sci 2024:d4sc05111d. [PMID: 39290589 PMCID: PMC11403580 DOI: 10.1039/d4sc05111d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Controllable β-carbon elimination to extrude norbornene remains a long-standing challenge in palladium and norbornene chemistry. Herein, this manuscript describes a switchable synthesis of biologically active C4-ethylaminoindole and C7-aminoindoline scaffolds by controlling β-carbon elimination, utilizing aziridine as a C-H ethylamination reagent through a C-N bond cleavage reaction. Furthermore, the protecting groups of the product can be easily removed, offering an unusual method for the synthesis of dopamine receptor agonists.
Collapse
Affiliation(s)
- Bo-Sheng Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Bao-Jie Deng
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yuan-Xin Zhi
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Tian-Jiao Guo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yi-Ming Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xue-Ya Gou
- State Key Laboratory of Applied OrganicChemistry, Lanzhou University Lanzhou 730000 China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yong-Min Liang
- State Key Laboratory of Applied OrganicChemistry, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
8
|
Li W, Shi S, Cao M, Gao W, Zhang X, Li W, Yu Y, Li T. Palladium(II)-Catalyzed Norbornene-Mediated Selective meta-C-H Silylation for the Synthesis of Arylsilanes from Primary Benzamides. Org Lett 2024; 26:5506-5510. [PMID: 38900141 DOI: 10.1021/acs.orglett.4c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A palladium(II)-catalyzed norbornene-mediated remote selective meta-C-H silylation of primary benzamides was developed for the synthesis of arylsilanes. Such a conversion provides access to a range of arylsilanes with exclusive selectivity using norbornene (NBE) as the meta-C-H activator. The amide directing group can be detached simultaneously through C-C bond cleavage or undergo a dehydration reaction pathway to form nitriles.
Collapse
Affiliation(s)
- Wenguang Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Shukui Shi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Man Cao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Wenchao Gao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Xu Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Wentao Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Yongqi Yu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| |
Collapse
|
9
|
Rogova T, Ahrweiler E, Schoetz MD, Schoenebeck F. Recent Developments with Organogermanes: their Preparation and Application in Synthesis and Catalysis. Angew Chem Int Ed Engl 2024; 63:e202314709. [PMID: 37899306 DOI: 10.1002/anie.202314709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 10/31/2023]
Abstract
Within the sphere of traditional Pd0 /PdII cross coupling reactions, organogermanes have been historically outperformed both in terms of scope and reactivity by more conventional transmetalating reagents. Subsequently, this class of compounds has been largely underutilized as a coupling partner in bond-forming strategies. Most recent studies, however, have shown that alternative modes of activation of these notoriously robust building blocks transform organogermanes into the most reactive site of the molecule-capable of outcompeting other functional groups (such as boronic acids, esters and silanes) for both C-C and C-heteroatom bond formation. As a result, over the past few years, the literature has increasingly featured methodologies that explore the potential of organogermanes as chemoselective and orthogonal coupling partners. Herein we highlight some of these recent advances in the field of organogermane chemistry both with respect to their synthesis and applications in synthetic and catalytic transformations.
Collapse
Affiliation(s)
- Tatiana Rogova
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
10
|
Li W, Cao M, Zhang C, Shi S, Liu J, Li W, Zhang X, Yu Y, Li T. Palladium/NBE-Catalyzed Regioselective C-H Silylation: Access to Divergent Silicon-Containing Indoles. Org Lett 2024; 26:1143-1147. [PMID: 38299994 DOI: 10.1021/acs.orglett.3c04109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A palladium/norbornene (NBE)-catalyzed regioselective C-H silylation of free NH-indoles is reported. This protocol uses Pd(OAc)2 as the catalyst and Cu(OAc)2 as the oxidant, and the reaction relies on the control of NBE as a switch. The reaction tolerates various functional groups, and a series of silicon-containing indoles were directly synthesized in 30%-94% yields.
Collapse
Affiliation(s)
- Wenguang Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Man Cao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Chunyan Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Shukui Shi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Juan Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Wentao Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Xu Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Yongqi Yu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| |
Collapse
|
11
|
Sukowski V, van Borselen M, Mathew S, de Bruin B, Fernández-Ibáñez MÁ. meta-C-H Arylation of Aniline Derivatives via Palladium/ S,O-Ligand/Norbornene Cooperative Catalysis. Angew Chem Int Ed Engl 2023:e202317741. [PMID: 38079090 DOI: 10.1002/anie.202317741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Aromatic amines are ubiquitous moieties in organic molecules and their direct functionalization is of great interest in many research areas due to their prevalence in pharmaceuticals and organic electronics. While several synthetic tools exist for the ortho- and para-functionalization of anilines, the functionalization of the less reactive meta-position is not easy to achieve with current methods. To date, the meta-C-H arylation of aniline derivatives has been restricted to either the use of directing groups & templates, or their transformation into anilides & quaternary anilinium salts. Herein, we report the first general and efficient meta-C-H-arylation of non-directed aniline derivatives via cooperative catalysis with a palladium-S,O-ligand-norbornene system. The reaction proceeds under mild conditions with a wide range of aniline derivatives and aryl iodides, while being operationally simple and scalable. Our preliminary mechanistic investigation-including the isolation of several palladium complexes and deuterium experiments-reveal useful insights into the substituent-effects of both the aniline-substrate and the norbornene-mediator during the meta-C-H activation step.
Collapse
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Manuela van Borselen
- Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | |
Collapse
|
12
|
Han C, Zhao F, Lu Q, Liu F. Computational Determination of the Mechanism of the Palladium-Catalyzed Domino Reaction of ortho-Iodostyrene, Oxanorbornadiene, and Phenylboronic Acid. J Org Chem 2023; 88:15608-15614. [PMID: 37905531 DOI: 10.1021/acs.joc.3c01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The palladium-catalyzed three-component domino reaction of ortho-iodostyrene, 2,3-dicarbomethoxy-7-oxanorbornadiene (ONBD), and phenylboronic acid discovered by the Lautens group provides a convenient method to synthesize indenes derivatives. Herein, density functional theory (DFT) calculations were employed to explore the detailed mechanism of this domino reaction. The computational results suggest that the alkene-insertion-first and the transmetalation-first mechanisms are competitive, and the former mechanism is slightly more favorable because of the difficult intramolecular alkene insertion of the alkyl-PdII-aryl than alkyl-PdII-I complex. Further analysis on substituents of ONBD unveils the impacts of noncovalent interactions and electronic effect on the rate-determining retro-Diels-Alder process. The understanding of this domino reaction has important implications for developing a novel palladium-catalyzed domino reaction with a retro-Diels-Alder strategy.
Collapse
Affiliation(s)
- Chunyu Han
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fengyue Zhao
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qianqian Lu
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fang Liu
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Zhang Y, Chen Y, Tian Q, Wang B, Cheng G. Palladium-Catalyzed Multicomponent Assembly of ( Z)-Alkenylborons via Carbopalladation/Boronation/Retro-Diels-Alder Cascade Reaction. J Org Chem 2023; 88:11793-11800. [PMID: 37515567 DOI: 10.1021/acs.joc.3c01084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
A palladium-catalyzed multicomponent cascade reaction of aryl iodides, oxanorbornadiene, and diborns to access (Z)-alkenylborons is reported. This transformation proceeds through the sequential carbopalladation/boronation/retro-Diels-Alder domino reaction. The oxanorbornadiene used in this reaction serves as an acetylene surrogate, which is generated via a retro-Diels-Alder reaction. Such a stereoselective and scalable approach has a wide range of functional group tolerance and good substrate universality.
Collapse
Affiliation(s)
- Yuqing Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
14
|
Zhu BB, Zhang SS, Fu JG, Lin GQ, Feng CG. Palladium-catalyzed disilylation of ortho-halophenylethylenes enabled by 2-pyridone ligand. Chem Commun (Camb) 2023; 59:5922-5925. [PMID: 37171020 DOI: 10.1039/d3cc01452e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A palladium-catalyzed disilylation reaction applicable for a variety of non-, α-, or β-substituted and α,β-disubstituted ortho-halophenylethylenes has been developed. This reaction proceeds with high yields and very low catalyst loadings. The two C-Si bonds of the disilylated products could be well-differentiated chemoselectively in the reaction with various electrophiles.
Collapse
Affiliation(s)
- Bin-Bin Zhu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shu-Sheng Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jian-Guo Fu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
15
|
Xu T, Zhou X, Han Y, Zhang L, Liu L, Huang T, Li C, Tang Z, Wan S, Chen T. Palladium-catalyzed stereo-selective three-component cis-1,2-arylalkynylation of bicyclic alkenes with aryltriflates and terminal alkynes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Liu J, Lin H, Jiang H, Huang L. Polysubstituted Indole Synthesis via Palladium/Norbornene Cooperative Catalysis of Oxime Esters. Org Lett 2022; 24:484-489. [PMID: 34978457 DOI: 10.1021/acs.orglett.1c03679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polysubstituted indoles are prevalent in pharmaceuticals, agrochemicals, and organic materials. Presented herein is the fact that polyfunctionalized indoles can be efficiently constructed from easily accessible oxime esters and aryl iodides, involving a palladium/norbornene synergistic synthesis. The reaction is enabled by a unique class of electrophiles in palladium/norbornene cooperative catalysis, which are oxime esters derived from simple ketone. The broad substrate scope and high functional group tolerance could make this method attractive for the synthesis of polysubstituted indoles.
Collapse
Affiliation(s)
- Jiechun Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haojiang Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
17
|
Cheng C, Zhu Q, Zhang Y. Intermolecular C-H silylation through cascade carbopalladation and vinylic to aryl 1,4-palladium migration. Chem Commun (Camb) 2021; 57:9700-9703. [PMID: 34555133 DOI: 10.1039/d1cc03677g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A palladium-catalyzed remote C-H silylation reaction has been developed through vinylic to aryl 1,4-palladium migration. By using alkyne-tethered aryl iodides as the starting materials and hexamethyldisilane as the silylating reagent, the reaction involves cascade intramolecular carbopalladation, 1,4-palladium migration, and silylation with hexamethyldisilane, and leads to the formation of exocyclic alkene-containing 5-silylisoquinolines as the final products.
Collapse
Affiliation(s)
- Cang Cheng
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Qiongqiong Zhu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
18
|
Xu Y, Xu W, Chen X, Luo X, Lu H, Zhang M, Yang X, Deng G, Liang Y, Yang Y. Me 3SiSiMe 2(O n Bu): a disilane reagent for the synthesis of diverse silacycles via Brook- and retro-Brook-type rearrangement. Chem Sci 2021; 12:11756-11761. [PMID: 34659712 PMCID: PMC8442712 DOI: 10.1039/d1sc03487a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Herein, a readily available disilane Me3SiSiMe2(OnBu) has been developed for the synthesis of diverse silacycles via Brook- and retro-Brook-type rearrangement. This protocol enables the incorporation of a silylene into different starting materials, including acrylamides, alkene-tethered 2-(2-iodophenyl)-1H-indoles, and 2-iodobiaryls, via the cleavage of Si–Si, Si–C, and Si–O bonds, leading to the formation of spirobenzosiloles, fused benzosiloles, and π-conjugated dibenzosiloles in moderate to good yields. Preliminary mechanistic studies indicate that this transformation is realized by successive palladium-catalyzed bis-silylation and Brook- and retro-Brook-type rearrangement of silane-tethered silanols. A readily available disilane Me3SiSiMe2(OnBu) as a silylene source has been developed for the synthesis of diverse silacycles via Brook- and retro-Brook-type rearrangement.![]()
Collapse
Affiliation(s)
- Yankun Xu
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Weiwei Xu
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Xinyang Chen
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Xiai Luo
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Haiyan Lu
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Minghao Zhang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Xiumei Yang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| |
Collapse
|
19
|
Tang Y, Liu K, Zhang J, Liu L, Huang T, Li C, Tang Z, Chen T. Palladium-Catalyzed Stereoselective Difunctionalization of Bicyclic Alkenes with Organoammonium Salts and Organoboronic Compounds. J Org Chem 2021; 86:11937-11947. [PMID: 34374552 DOI: 10.1021/acs.joc.1c01339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed difunctionalization of bicyclic alkenes with organoammonium salts and organoboronic compounds was reported. A wide range of functionalized cyclic products, including those bearing functional groups, were produced stereoselectively in good to excellent yields. The gram-scale experiment, one-pot operation, and synthetic application of β-borylated products further demonstrated the synthetic value of this new reaction in organic synthesis.
Collapse
Affiliation(s)
- Yuanyuan Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Kuan Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Jinjin Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Chunya Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Zhi Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
20
|
Abstract
The direct C-H germylation of heteroarenes, arenes, and benzylic C-H bonds promoted by lithium tetramethylpiperidide (LiTMP) is reported. The method is rapid, selective, and operationally simple, consisting of direct addition of all reagents at room temperature (one-pot procedure). The synthetic utility of these newly accessed aryl germanes as viable coupling partners in Pd catalysis is also showcased.
Collapse
Affiliation(s)
- Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
21
|
Li WZ, Wang ZX. A nickel-catalyzed silylation reaction of alkyl aryl sulfoxides with silylzinc reagents. Org Biomol Chem 2021; 19:5082-5086. [PMID: 34037055 DOI: 10.1039/d1ob00840d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ni(PEt3)Cl2-catalyzed silylation of alkyl aryl sulfoxides with silylzinc reagents was carried out. This protocol allows alkyl aryl sulfoxides to convert to arylsilicon compounds under mild reaction conditions, tolerates a range of functional groups and is suitable for a wide scope of substrates.
Collapse
Affiliation(s)
- Wei-Ze Li
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China..
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.. and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
22
|
Pounder A, Ho A, Macleod M, Tam W. Chemistry of Unsymmetrical C1-Substituted Oxabenzonorbornadienes. Curr Org Synth 2021; 18:446-474. [PMID: 33402089 DOI: 10.2174/1570179417666210105121115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
Oxabenzonorbornadiene (OBD) is a useful synthetic intermediate, which can be readily activated by transition metal complexes with great face selectivity due to its dual-faced nature and intrinsic angle strain on the alkene. To date, the understanding of transition-metal catalyzed reactions of OBD itself has burgeoned; however, this has not been the case for unsymmetrical OBDs. Throughout the development of these reactions, the nature of C1-substituent has proven to have a profound effect on both the reactivity and selectivity of the outcome of the reaction. Upon substitution, different modes of reactivity arise, contributing to the possibility of multiple stereo-, regio-, and in extreme cases, constitutional isomers, which can provide unique means of constructing a variety of synthetically useful cyclic frameworks. To maximize selectivity, an understanding of bridgehead substituent effects is crucial. To that end, this review outlines hitherto reported examples of bridgehead substituent effects on the chemistry of unsymmetrical C1-substituted OBDs.
Collapse
Affiliation(s)
- Austin Pounder
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Angel Ho
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Matthew Macleod
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - William Tam
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
23
|
Chen C, Sun W, Liu L, Zhao J, Huang Y, Shi X, Ding J, Jiao D, Zhu B. Palladium-catalyzed domino Heck-disilylation and Heck-monosilylation of alkene-tethered carbamoyl chlorides: synthesis of versatile silylated oxindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00221j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report efficient domino Heck-disilylation and Heck-monosilylation of alkene-tethered carbamoyl chlorides with hexamethyldisilane under mild reaction conditions.
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Wan Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Jinghui Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Yujie Huang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Xiaonan Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Jie Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Dequan Jiao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|
24
|
Cao L, Hua Y, Cheng HG, Zhou Q. C–H hetero-functionalization of arenes through palladacyclopentane-type intermediates. Org Chem Front 2021. [DOI: 10.1039/d0qo01350a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review article, we summarized recent advances in C–H hetero-functionalization of arenes through palladacyclopentane-type intermediates.
Collapse
Affiliation(s)
- Liming Cao
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Yu Hua
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| |
Collapse
|
25
|
Chen Y, Lv W, Ba D, Wen S, Cheng G. Palladium-Catalyzed Chemoselective Synthesis of 2-Aminocinnamyl Esters via Sequential Amination and Olefination of Aryl Iodides. J Org Chem 2020; 85:13280-13289. [DOI: 10.1021/acs.joc.0c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanhui Chen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Weiwei Lv
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Dan Ba
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Si Wen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
26
|
Lv W, Liu S, Chen Y, Wen S, Lan Y, Cheng G. Palladium-Catalyzed Intermolecular Trans-Selective Carbofunctionalization of Internal Alkynes to Highly Functionalized Alkenes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02522] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weiwei Lv
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
| | - Yanhui Chen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Si Wen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Guolin Cheng
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
27
|
Lv W, Chen Y, Wen S, Ba D, Cheng G. Modular and Stereoselective Synthesis of C-Aryl Glycosides via Catellani Reaction. J Am Chem Soc 2020; 142:14864-14870. [PMID: 32808778 DOI: 10.1021/jacs.0c07634] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we describe a Catellani-type C-H glycosylation to provide rapid access to various highly decorated α-C-(hetero)aryl glycosides in a modular and stereoselective manner (>90 examples). The termination step is flexible, which is demonstrated by ipso-Heck reaction, hydrogenation, Suzuki coupling, and Sonogashira coupling. Application of this methodology has been showcased by preparing glycoside-pharmacophore conjugates and a dapagliflozin analogue. Notably, the technology developed herein represents an unprecedented example of Catellani-type alkylation involving an SN1 pathway.
Collapse
Affiliation(s)
- Weiwei Lv
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Si Wen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Dan Ba
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
28
|
Selmani A, Gevondian AG, Schoenebeck F. Germylation of Arenes via Pd(I) Dimer Enabled Sulfonium Salt Functionalization. Org Lett 2020; 22:4802-4805. [PMID: 32491868 DOI: 10.1021/acs.orglett.0c01609] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While aryl germanes have recently found usage as coupling partners in powerful catalytic applications, the synthetic access to this promising functionality is currently limited. This report details the straightforward synthesis of functionalized aryl triethylgermanes via formal C-H functionalization. Building on the concept of directing-group-free and site-selective C-H functionalization of arenes to thianthrenium salt intermediates, we showcase their efficient couplings with triethylgermane (Et3Ge-H) at room temperature, which was enabled by the air- and moisture-stable Pd(I) dimer, [Pd(μ-I)(PtBu3)]2. The method tolerates numerous functional groups, including valuable (pseudo)halides.
Collapse
Affiliation(s)
- Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Avetik G Gevondian
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
29
|
Abstract
An unexpected ortho-Heck reaction has been discovered during the study of palladium/norbornene (Pd/NBE) catalysis. Under the Catellani reaction conditions in the presence of lithium salts and olefins, Heck coupling takes place at the ortho position instead of the commonly observed ipso position; meanwhile, a norbornyl group is introduced at the arene ipso position. Systematic deuterium labeling and crossover experiments suggest an unusual 1,4-palladium migration/intramolecular hydrogen transfer pathway. The knowledge gained in this study could provide insights for the future development of the Pd/NBE catalysis.
Collapse
Affiliation(s)
- Alexander J Rago
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
30
|
Wollenburg M, Bajohr J, Marchese AD, Whyte A, Glorius F, Lautens M. Palladium-Catalyzed Disilylation and Digermanylation of Alkene Tethered Aryl Halides: Direct Access to Versatile Silylated and Germanylated Heterocycles. Org Lett 2020; 22:3679-3683. [DOI: 10.1021/acs.orglett.0c01169] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marco Wollenburg
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan Bajohr
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Austin D. Marchese
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Andrew Whyte
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Mark Lautens
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
31
|
Ji X, Gu Y, Cheng C, Wu Z, Zhang Y. Palladium‐Catalyzed Three‐Component Reactions for the Synthesis of Norbornane‐Fused Indanes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaoming Ji
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Yichao Gu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Cang Cheng
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Zhuo Wu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| |
Collapse
|
32
|
Liang RX, Chen RY, Zhong C, Zhu JW, Cao ZY, Jia YX. 3,3′-Disubstituted Oxindoles Formation via Copper-Catalyzed Arylboration and Arylsilylation of Alkenes. Org Lett 2020; 22:3215-3218. [DOI: 10.1021/acs.orglett.0c00999] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Ru-Yi Chen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Chao Zhong
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Jia-Wen Zhu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Zhong-Yan Cao
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| |
Collapse
|
33
|
Vivek Kumar S, Banerjee S, Punniyamurthy T. Transition metal-catalyzed coupling of heterocyclic alkenes via C–H functionalization: recent trends and applications. Org Chem Front 2020. [DOI: 10.1039/d0qo00279h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heterocyclic alkenes and their derivatives are an important class of reactive feedstock and valuable synthons. This review highlights the transition-metal-catalyzed coupling of heterocyclic alkenes via a C–H functionalization strategy.
Collapse
|
34
|
Lu H, Yang X, Zhou L, Li W, Deng G, Yang Y, Liang Y. Palladium-catalyzed domino Heck-disilylation and -borylation of alkene-tethered 2-(2-halophenyl)-1H-indoles: access to diverse disilylated and borylated indolo[2,1-a]isoquinolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00492h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A chemoselective domino Heck-disilylation and -borylation reaction for generating various disilylated and borylated tetracyclic indolo[2,1-a]isoquinolines has been developed.
Collapse
Affiliation(s)
- Haiyan Lu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Xiumei Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Liwei Zhou
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Wenguang Li
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| |
Collapse
|
35
|
Ji X, Wei F, Wan B, Cheng C, Zhang Y. Palladium-catalyzed intermolecular C–H silylation initiated by aminopalladation. Chem Commun (Camb) 2020; 56:7801-7804. [PMID: 32555917 DOI: 10.1039/d0cc00872a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The intermolecular disilylation reaction of C,C-palladacycles obtained through aminopalladation has been developed.
Collapse
Affiliation(s)
- Xiaoming Ji
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- P. R. China
| | - Feng Wei
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- P. R. China
| | - Bin Wan
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- P. R. China
| | - Cang Cheng
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- P. R. China
| | - Yanghui Zhang
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- P. R. China
| |
Collapse
|
36
|
Li W, Zhang C, Lu H, Wang Y, Deng G, Liang Y, Yang Y. Pd-Catalyzed one-pot synthesis of vinylsilanes via a three-component tandem reaction. Org Chem Front 2020. [DOI: 10.1039/d0qo00601g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A palladium-catalyzed three-component tandem reaction for stereoselective assembly of various tri- or tetrasubstituted vinylsilanes is established.
Collapse
Affiliation(s)
- Wenguang Li
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Chao Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Haiyan Lu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Yajun Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| |
Collapse
|
37
|
Feng Y, Wang Y, Zhao S, Zhang DP, Li X, Liu H, Dong Y, Sun FG. A practical ortho-acylation of aryl iodides enabled by moisture-insensitive activated esters via palladium/norbornene catalysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00982b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein reported is a practical Catellani-type ortho-acylation of aryl iodides enabled by employing moisture-insensitive esters as the electrophile via C(O)–O bond cleavage.
Collapse
Affiliation(s)
- Yunxia Feng
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Yangyang Wang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Shen Zhao
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Dao-Peng Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Feng-Gang Sun
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| |
Collapse
|
38
|
Chen C, Liu L, Sun W, Ding J, Zhu YP, Zhu B. Pd/NBE-catalyzed sequential carbamoylation/olefination of aryl iodides. Org Chem Front 2020. [DOI: 10.1039/d0qo00905a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present a Pd/NBE-catalyzed sequential carbamoylation/olefination of aryl iodides under mild reaction conditions, which provide diverse 4-methylene-3,4-dihydro-1(2H)-isoquinolin-1-one analogues.
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Wan Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Jie Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Yan-Ping Zhu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|
39
|
Wen S, Chen Y, Zhao Z, Ba D, Lv W, Cheng G. Ruthenium(II)-Catalyzed Construction of Isocoumarins via Dual C–H/C–C Activation of Sulfoxonium Ylides. J Org Chem 2019; 85:1216-1223. [DOI: 10.1021/acs.joc.9b02520] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Si Wen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Zemin Zhao
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Dan Ba
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Weiwei Lv
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
40
|
Abstract
Palladium/norbornene cooperative catalysis has emerged as a distinct approach to construct polyfunctionalized arenes from readily available starting materials. This Review provides a comprehensive overview of this field, including the early stoichiometric investigations, catalytic reaction developments, as well as the applications in the syntheses of bioactive compounds and polymers. The section of catalytic reactions is divided into two parts according to the reaction initiation mode: Pd(0)-initiated reactions and Pd(II)-initiated reactions.
Collapse
Affiliation(s)
- Jianchun Wang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
41
|
Zhang BS, Li Y, Zhang Z, An Y, Wen YH, Gou XY, Quan SQ, Wang XG, Liang YM. Synthesis of C4-Aminated Indoles via a Catellani and Retro-Diels–Alder Strategy. J Am Chem Soc 2019; 141:9731-9738. [DOI: 10.1021/jacs.9b05009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bo-Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu-Hua Wen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Si-Qi Quan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xin-Gang Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
42
|
Cai W, Gu Z. Selective Ortho Thiolation Enabled by Tuning the Ancillary Ligand in Palladium/Norbornene Catalysis. Org Lett 2019; 21:3204-3209. [PMID: 30978028 DOI: 10.1021/acs.orglett.9b00923] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Site-selective introduction of a sulfur group into aromatic compounds is essential and useful in organic, material, and pharmaceutical chemistry. A palladium/norbornene-catalyzed chemoselective ortho thiolation of aryl halides was reported. The selectivity of reductive elimination for C(Ar)-SR bond formation was well controlled by tuning the ancillary ligand in the aryl-NBE palladacycle Pd(IV) intermediate. The reaction showcased good substrate scope: both S-alkyl and S-aryl thiosulfonates were compatible.
Collapse
Affiliation(s)
- Wenqiang Cai
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , P.R. China
| | - Zhenhua Gu
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , P.R. China
| |
Collapse
|
43
|
Li W, Chen W, Zhou B, Xu Y, Deng G, Liang Y, Yang Y. NBE-Controlled Palladium-Catalyzed Interannular Selective C-H Silylation: Access to Divergent Silicon-Containing 1,1'-Biaryl-2-Acetamides. Org Lett 2019; 21:2718-2722. [PMID: 30924667 DOI: 10.1021/acs.orglett.9b00690] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel palladium-catalyzed interannular selective C-H silylation of 1,1'-biaryl-2-acetamides is described. The combination of palladium catalyst with copper oxidant enables meta- or ortho-selective C-H silylation by employing hexamethyldisilane as a trimethylsilyl source, which relies on the control of NBE derivatives as a switch, thus providing straightforward access to divergent silicon-containing 1,1'-biaryl-2-acetamides.
Collapse
Affiliation(s)
- Wenguang Li
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Wenqi Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Bang Zhou
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Yankun Xu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| |
Collapse
|
44
|
Xu Y, Liu X, Chen W, Deng G, Liang Y, Yang Y. Palladium/Norbornene Chemistry: Synthesis of Norbornene-Containing Arylsilanes Involving Double C–Si Bond Formation. J Org Chem 2018; 83:13930-13939. [DOI: 10.1021/acs.joc.8b02282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yankun Xu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiaodong Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Wenqi Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|