1
|
Barik P, Behera SS, Nayak LK, Nanda LN, Nanda SK, Patri P. Transition metal catalysed cascade C-C and C-O bond forming events of alkynes. Org Biomol Chem 2024; 22:5052-5086. [PMID: 38856756 DOI: 10.1039/d3ob02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The past few decades have witnessed the emergence of domino reactions as a powerful tool for the multi-functionalization of alkynes for the rapid and smooth construction of complex molecular architectures. In this context, employing transition metal catalysis, vicinal/geminal cascade functionalization of alkynes involving C-C and C-O bond-formation reactions, has become a preferred strategy for the synthesis of oxygenated motifs. Despite this significant progress, reviews documenting such strategies are either metal/functional group-centric or target-oriented, thus hampering further developments. Therefore, in this review, different conceptual approaches based on C-C and C-O bond-forming events of alkynes such as carboxygenation (C-C and CO bond formation), carboalkoxylation (C-C and C-OR bond formation), and carboacetoxylation (C-C and C-OAc bond formations) are discussed, and examples from the literature from the last two decades are presented. Further, we have presented detailed insights into the mechanism of different transformations.
Collapse
Affiliation(s)
- Padmanava Barik
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| | | | - Laxmi Kanta Nayak
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| | | | - Santosh Kumar Nanda
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| | - Padmanava Patri
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| |
Collapse
|
2
|
Yu ZQ, Ren H, Guo XW, Yang GG, Wu J, Xi JM, Xiang XY, Fang J, Wu QX. Targeted isolation, identification, and antioxidant evaluation of aromatic polyketides from a plant-derived fungus Ophiobolus cirsii LZU-1509. Fitoterapia 2024; 175:105884. [PMID: 38460855 DOI: 10.1016/j.fitote.2024.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
There are >350 species of the Ophiobolus genus, which is not yet very well-known and lacks research reports on secondary metabolites. Three new 3,4-benzofuran polyketides 1-3, a new 3,4-benzofuran polyketide racemate 4, two new pairs of polyketide enantiomers (±)-5 and (±)-7, two new acetophenone derivatives 6 and 8, and three novel 1,4-dioxane aromatic polyketides 9-11, were isolated from a fungus Ophiobolus cirsii LZU-1509 derived from an important medicinal and economic crop Anaphalis lactea. The isolation was guided by LC-MS/MS-based GNPS molecular networking analysis. The planar structures and relative configurations were mainly elucidated by NMR and HR-ESI-MS data. Their absolute configurations were determined by using X-ray diffraction analysis and via comparing computational and experimental ECD, NMR, and specific optical rotation data. 9 possesses an unreported 5/6/6/6/5 five-ring framework with a 1,4-dioxane, and 10 and 11 feature unprecedented 6/6/6/5 and 6/6/5/6 four-ring frames containing a 1,4-dioxane. The biosynthetic pathways of 9-11 were proposed. 1-11 were nontoxic in HT-1080 and HepG2 tumor cells at a concentration of 20 μM, whereas 3 and 5 exerted higher antioxidant properties in the hydrogen peroxide-stimulated model in the neuron-like PC12 cells. They could be potential antioxidant agents for neuroprotection.
Collapse
Affiliation(s)
- Zhen-Qing Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Hao Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao-Wei Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Ge-Ge Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jia Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jun-Min Xi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xin-Yu Xiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Quan-Xiang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
3
|
Mullaivendhan J, Akbar I, Ahamed A, Gatasheh MK, Hatamleh AA, Raman G, Manilal A, Kuzhunellil Raghavanpillai S. Synthesis of a New Series of Anthraquinone-Linked Cyclopentanone Derivatives: Investigating the Antioxidant, Antibacterial, Cytotoxic and Tyrosinase Inhibitory Activities of the Mushroom Tyrosinase Enzyme Using Molecular Docking. Drug Des Devel Ther 2024; 18:597-612. [PMID: 38436040 PMCID: PMC10908290 DOI: 10.2147/dddt.s439633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose New bioactive anthraquinone derivatives are investigated for antibacterial, tyrosinase inhibitory, antioxidant cytotoxic activity, and molecular docking. Methods The compounds were produced using the grindstone method, yielding 69 to 89%. These compounds were analyzed using IR, 1H, and 13C NMR and elemental and mass spectral methods. Additionally, the antibacterial, antioxidant, and tyrosinase inhibitory activities of all the synthesised compounds were evaluated. Results Compound 2 showed remarkable tyrosinase inhibition activity, with an (IC50: 13.45 µg/mL), compared to kojic acid (IC50: 19.40 µg/mL). It also exhibited moderate antioxidant and antibacterial activities with respect to the references BHT and ampicillin, respectively. Kinetic analysis revealed that the tyrosinase inhibitory activity of compound 2 was non-competitive and competitive, whereas that of compound 1 was low. All compounds (1-8) were significantly less active than doxorubicin (LC50: 0.74±0.01μg/mL). However, compound 2 affinity for the 2Y9X protein was lower than kojic acid, with a lower docking score (-8.6 kcal/mol compared to (-4.7 kcal/mol), making it more effective. Conclusion All synthesized compounds displayed remarkable antibacterial, tyrosinase inhibitory, antioxidant, and cytotoxic activities, with compound 2 showing exceptional potency as a multitarget agent. Anthraquinone substituent groups may offer the potential for the development of treatments. The derivatives were synthesized using the grindstone method, and their antibacterial, antioxidant, tyrosinase inhibitory, and cytotoxic activities were inspected. Molecular docking and molecular dynamics simulations were performed using compound 2 and kojic acid to validate the results and confirm the stability of the compounds.
Collapse
Affiliation(s)
- Janani Mullaivendhan
- Research Department of Chemistry, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti, Tamil Nadu, 621007, India
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti, Tamil Nadu, 621007, India
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Gurusamy Raman
- Department of Life Science, Yeungnam University, Gyeongsan, Gyeongbuk-do, 38541, South Korea
| | - Aseer Manilal
- Department of Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | | |
Collapse
|
4
|
Lu WX, Mao JG, Xing J, Tang HY, Liao J, Quan YS, Lu ZM, Yang ZJ, Shen C. Palladium-Catalyzed Synthesis of Indanone via C-H Annulation Reaction of Aldehydes with Norbornenes. J Org Chem 2024; 89:784-792. [PMID: 38096498 DOI: 10.1021/acs.joc.3c02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A novel methodology for the synthesis of indanone derivates has been developed. The palladium-catalyzed annulation reaction of o-bromobenzaldehydes with norbornene derivatives is achieved through extremely concise reaction processes. The indanone skeleton was established directly via C-H activation of the aldehyde group under a mild reaction condition. This method is simple and practical, which simplified the traditional synthesis method for the rapid construction of indanone.
Collapse
Affiliation(s)
- Wen-Xiu Lu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Jian-Gang Mao
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Jian Xing
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Hong-Yu Tang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Jinsheng Liao
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Yao-Sheng Quan
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Zhi-Ming Lu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Zhi-Jian Yang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| |
Collapse
|
5
|
Mishra G, Sasmal M, Chakraborty A, Thirupathi B. Synthesis of Highly Functionalized Spirocycles and Pentafulvene-Containing Dyes Involving 2-(2'-ketoalkyl)-1,3-indandiones. Chemistry 2023; 29:e202301976. [PMID: 37817469 DOI: 10.1002/chem.202301976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/12/2023]
Abstract
Synthesis of highly functionalized spiro[4.4]nonane and spiro[4.5]decane motifs by the reaction of dimethylacetylenedicarboxylate (DMAD) with 2-(2'-ketoalkyl)-1,3-indandiones and 2-(3'-ketoalkyl)-1,3-indandiones, respectively, has been developed by utilizing a catalytic amount of DABCO. The tertiary hydroxy-containing spiro[4.4]nonane products were converted into fully conjugated pentafulvene π-systems in an acidic medium through dehydration and unprecedented C-C bond rearrangement.
Collapse
Affiliation(s)
- Gitanjali Mishra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, 760 010, Berhampur, Odisha, India
| | - Mukesh Sasmal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, 760 010, Berhampur, Odisha, India
| | - Arundhuti Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, 760 010, Berhampur, Odisha, India
| | - Barla Thirupathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, 760 010, Berhampur, Odisha, India
| |
Collapse
|
6
|
Wang JY, Zhang S, Yuan Q, Li G, Yan S. Catalytic Radical-Triggered Annulation/Iododifluoromethylation of Enynones for the Stereospecific Synthesis of 1-Indenones. J Org Chem 2023. [PMID: 37220028 DOI: 10.1021/acs.joc.3c00471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A new Pd(II)-catalyzed annulation/iododifluoromethylation of enynones has been developed for the synthesis of versatile 1-indanones with moderate to good yields (26 examples). The present strategy enabled the concomitant incorporation of two important difluoroalkyl and iodo functionalities into 1-indenone skeletons with (E)-stereoselectivity. The mechanistic pathway was proposed, consisting of the difluoroalkyl radical-triggered α,β-conjugated addition/5-exo-dig cyclization/metal radical cross-coupling/reductive elimination cascade.
Collapse
Affiliation(s)
- Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shenghu Yan
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
7
|
Chechulina AS, Knyazeva EA, Kan B, Duan T, Rakitin OA. tert-Butyl (E)-3-oxo-2-(3-oxoisobenzofuran-1(3H)-ylidene)butanoate. MOLBANK 2023. [DOI: 10.3390/m1614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Non-fullerene acceptors have recently attracted much attention as components of organic solar cells. 1H-indene-1,3(2H)-dione is a key compound for the synthesis of the end-capping component of non-fullerene acceptors. In this communication, an intermediate for the synthesis of this compound, tert-butyl (E)-3-oxo-2-(3-oxoisobenzofuran-1(3H)-ylidene)butanoate, was prepared by the reaction between phthalic anhydride and tert-butyl acetoacetate. Further treatment with sodium methoxide in methanol led to the formation of 1H-indene-1,3(2H)-dione in a high yield. The structure of the newly synthesized compound was established by means of elemental analysis, high-resolution mass spectrometry, 1H, 13C NMR, IR spectroscopy, mass spectrometry and X-ray analysis.
Collapse
|
8
|
Reactions of 3-Hydroxy-2-phenyl-1 H-benzo[ e]isoindol-1-one: A Route to 3-Hydroxy-/3-anilinobenzo[ e]indan-1-ones and Benzo[ f]phthalazin-1(2 H)-ones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238319. [PMID: 36500412 PMCID: PMC9737834 DOI: 10.3390/molecules27238319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022]
Abstract
New hydroxy- and anilinoindanone derivatives 3 and 4 were synthesized starting from 3-hydroxybenzo[e]isoindolinone 1 via the addition of alkyllithium (s-BuLi, n-BuLi, MeLi or i-PrLi) to the carbonyl group, followed by lactam ring opening and, finally, an intramolecular cyclization leading to target compounds. The same starting material was used for the preparation of the new benzo[f]phthalazinone derivatives 12-16 through multi-step reactions. The target derivative 16 was obtained from the corresponding bromolactam 15 by the Buchwald-Hartwig amination. Structures of the obtained compounds were confirmed by the NMR spectra.
Collapse
|
9
|
Pigot C, Brunel D, Dumur F. Indane-1,3-Dione: From Synthetic Strategies to Applications. Molecules 2022; 27:5976. [PMID: 36144711 PMCID: PMC9501146 DOI: 10.3390/molecules27185976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Indane-1,3-dione is a versatile building block used in numerous applications ranging from biosensing, bioactivity, bioimaging to electronics or photopolymerization. In this review, an overview of the different chemical reactions enabling access to this scaffold but also to the most common derivatives of indane-1,3-dione are presented. Parallel to this, the different applications in which indane-1,3-dione-based structures have been used are also presented, evidencing the versatility of this structure.
Collapse
Affiliation(s)
- Corentin Pigot
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Damien Brunel
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
10
|
Wang SC, Shen YT, Zhang TS, Hao WJ, Tu SJ, Jiang B. Cyclic Oxime Esters as Deconstructive Bifunctional Reagents for Cyanoalkyl Esterification of 1,6-Enynes. J Org Chem 2021; 86:15488-15497. [PMID: 34664501 DOI: 10.1021/acs.joc.1c01972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A concise copper catalysis strategy for the addition-cyclization of cyclic oxime esters across 1,6-enynes with high stereoselectivity to generate 1-indanones bearing an all-carbon quaternary center is reported. In this process, single-electron reduction of cyclic oxime esters enables deconstructive carbon-carbon cleavage to provide a key cyanopropyl radical poised for the addition-cyclization. This reaction is redox-neutral, exhibits good functional group compatibility, and features 100% atomic utilization. This process driven by copper catalyst makes readily available cyclic oxime esters as bifunctional reagents to demonstrate convergent synthesis.
Collapse
Affiliation(s)
- Shi-Chao Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yi-Ting Shen
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
11
|
Catalytic hydrative cyclization of aldehyde-ynamides with water for synthesis of medium-sized lactams. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1069-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Wang SC, Liu PY, Chen YX, Shen ZJ, Hao WJ, Tu SJ, Jiang B. Copper/silver co-mediated three-component bicyclization for accessing indeno[1,2- c]azepine-3,6-diones. Chem Commun (Camb) 2021; 57:7966-7969. [PMID: 34286745 DOI: 10.1039/d1cc02973h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new copper/silver-co-mediated three-component bicyclization of benzene-linked 1,6-enynes with ICF2CO2Et with TMSN3 was reported, and used to produce a wide range of hitherto unreported difluorinated tetrahydroindeno[1,2-c]azepine-3,6-diones with moderate to good yields. The mechanistic pathway consists of radical-induced 1,6-addition-cyclization, oxidative addition, reductive elimination, nitrene insertion and N-O cleavage, resulting in continuous multiple bond-forming events including C-C and C-N bonds to build up a 6/5/7 tricyclic framework.
Collapse
Affiliation(s)
- Shi-Chao Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Peng-Yu Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yi-Xin Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Zheng-Jia Shen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
13
|
Hu S, Han X, Xie X, Fang F, Wang Y, Saidahmatov A, Liu H, Wang J. Synthesis of Pyrazolo[1,2‐a]cinnolines
via
Rhodium(III)‐Catalyzed [4+2] Annulation Reactions of Pyrazolidinones with Sulfoxonium Ylides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shulei Hu
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Xu Han
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Xiong Xie
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Feifei Fang
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Yong Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Abdusaid Saidahmatov
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Hong Liu
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 People's Republic of China
| | - Jiang Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 People's Republic of China
| |
Collapse
|
14
|
An efficient one-pot synthesis of indanone fused heterocyclic compounds via SeO2/FeCl3 promoted intramolecular Friedel-Craft acylation reaction. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Zhu BH, Zhang YQ, Xu HJ, Li L, Deng GC, Qian PC, Deng C, Ye LW. Regio- and Stereoselective Synthesis of Diverse 3,4-Dihydro-2-quinolones through Catalytic Hydrative Cyclization of Imine- and Carbonyl-Ynamides with Water. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bo-Han Zhu
- Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ying-Qi Zhang
- Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hao-Jin Xu
- Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long Li
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Guo-Cheng Deng
- Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peng-Cheng Qian
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Long-Wu Ye
- Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Zhang S, Zhang Y, Zhang H, Wang Q, Huang L, Tian Z. An Efficient SeO2/FeCl3 Promoted Acylation:Intramolecular Friedel-Crafts Reaction Leading to a One-Pot Synthesis of Wrightiadione and Its Derivatives. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Geng F, Wang S, Song K, Hao W, Jiang B. Visible-Light-Driven Photocatalytic Kharasch-Type Addition of 1,6-Enynes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Das S, Dutta A. Recent advances in transition-metal-catalyzed annulations for the construction of a 1-indanone core. NEW J CHEM 2021. [DOI: 10.1039/d0nj06318e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transition metal-catalyzed carbon–carbon bond forming reactions are a well accepted strategy for the synthesis of organic compounds. This review gives a brief update on the transition-metal-catalyzed annulations to construct 1-indanone scaffolds.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry
- Rishi Bankim Chandra College for Women
- Naihati
- India
| | - Arpita Dutta
- Department of Chemistry
- Rishi Bankim Chandra Evening College
- Naihati
- India
| |
Collapse
|
19
|
Wang Y, Wei Z, Cao J, Liang D, Lin Y, Duan H. Synthesis of optically active 2-amino-1′-benzyl-2′,5-dioxo-5 H-spiro[indeno[1,2- b]pyran-4,3′-indoline]-3-carbonitriles catalyzed by a bifunctional squaramide derived from quinine. NEW J CHEM 2021. [DOI: 10.1039/d0nj06092e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first organocatalytic asymmetric reaction of propylene malononitrile with oxoindole and 1,3-indandione for the synthesis of chiral indeno-spiro compounds has been developed.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Chemistry
- Jilin University
- 130012 Changchun
- China
| | - Zhonglin Wei
- Department of Chemistry
- Jilin University
- 130012 Changchun
- China
| | - Jungang Cao
- Department of Chemistry
- Jilin University
- 130012 Changchun
- China
| | - Dapeng Liang
- Department of Chemistry
- Jilin University
- 130012 Changchun
- China
| | - Yingjie Lin
- Department of Chemistry
- Jilin University
- 130012 Changchun
- China
| | - Haifeng Duan
- Department of Chemistry
- Jilin University
- 130012 Changchun
- China
| |
Collapse
|
20
|
Maurya JP, Ramasastry SSV. Divergent Michael/Aldol Cascades Under Semi-Aqueous Conditions: Synthesis of Cyclopenta- and Cycloheptannulated (Hetero)arenes. J Org Chem 2021; 86:525-537. [PMID: 33395742 DOI: 10.1021/acs.joc.0c02195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of 3-acetoxyindanones and (hetero)arene-fused dihydrotropones was achieved via divergent annulation cascades. Under mild aqueous and basic conditions, α-substituted enone-aldehydes and 1,3-carbonyls undergo a Michael/aldol/hemiketalization/retro-aldol cascade for the formation of 3-acetoxyindanones possessing two contiguous stereogenic centers, one of which is an all-carbon quaternary center. On the other hand, the same enone-aldehydes generate new classes of fused-dihydrotropones upon reaction with 2,4-dioxobutanoates under merely the same reaction conditions via a Michael/aldol/lactonization/decarboxylation cascade.
Collapse
Affiliation(s)
- Jay Prakash Maurya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| |
Collapse
|
21
|
Pinedo-Rivilla C, Moraga J, Pérez-Sasián G, Peña-Hernández A, G. Collado I, Aleu J. Biocatalytic Preparation of Chloroindanol Derivatives. Antifungal Activity and Detoxification by the Phytopathogenic Fungus Botrytis cinerea. PLANTS 2020; 9:plants9121648. [PMID: 33255810 PMCID: PMC7759767 DOI: 10.3390/plants9121648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
Indanols are a family of chemical compounds that have been widely studied due to their broad range of biological activity. They are also important intermediates used as synthetic precursors to other products with important applications in pharmacology. Enantiomerically pure chloroindanol derivatives exhibiting antifungal activity against the phytopathogenic fungus Botrytis cinerea were prepared using biocatalytic methods. As a result of the biotransformation of racemic 6-chloroindanol (1) and 5-chloroindanol (2) by the fungus B. cinerea, the compounds anti-(+)-6-chloroindan-1,2-diol (anti-(+)-7), anti-(+)-5-chloroindan-1,3-diol (anti-(+)-8), syn-(+)-5-chloroindan-1,3-diol (syn-(+)-8), syn-(-)-5-chloroindan-1,3-diol (syn-(-)-8), and anti-(+)-5-chloroindan-1,2-diol (anti-(+)-9) were isolated for the first time. These products were characterized by spectroscopic techniques and their enantiomeric excesses studied by chromatographic techniques. The results obtained in the biotransformation seem to suggest that the fungus B. cinerea uses oxidation reactions as a detoxification mechanism.
Collapse
Affiliation(s)
- Cristina Pinedo-Rivilla
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (C.P.-R.); (J.M.); (G.P.-S.); (A.P.-H.); (I.G.C.)
| | - Javier Moraga
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (C.P.-R.); (J.M.); (G.P.-S.); (A.P.-H.); (I.G.C.)
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Microbiología, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Guillermo Pérez-Sasián
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (C.P.-R.); (J.M.); (G.P.-S.); (A.P.-H.); (I.G.C.)
| | - Alba Peña-Hernández
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (C.P.-R.); (J.M.); (G.P.-S.); (A.P.-H.); (I.G.C.)
| | - Isidro G. Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (C.P.-R.); (J.M.); (G.P.-S.); (A.P.-H.); (I.G.C.)
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (C.P.-R.); (J.M.); (G.P.-S.); (A.P.-H.); (I.G.C.)
- Correspondence: ; Tel.: +34-956-012747
| |
Collapse
|
22
|
Kumari A, Singh SK, Singh RB, Bhunia S, Ghosh P. A concise synthesis of 2-benzoyl-1-indanones and 1-indanones from 2-aryl-1-tetralones. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1771370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Anusueya Kumari
- Department of Chemistry, Central University of Jharkhand, Ranchi, India
| | | | - Raj Bahadur Singh
- Department of Chemistry, Central University of Jharkhand, Ranchi, India
| | - Sabyasachi Bhunia
- Department of Chemistry, Central University of Jharkhand, Ranchi, India
| | - Partha Ghosh
- Department of Chemistry, Central University of Jharkhand, Ranchi, India
| |
Collapse
|
23
|
Wu Y, Zhang T, Hao W, Tu S, Jiang B. Metal‐Free Radical Annulation‐Hydrofunctionalization of 1,6‐Enynes for Stereoselective Synthesis of (
E
)‐1‐Indanones. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ya‐Nan Wu
- School of Chemistry & Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
- School of Chemistry and Chemical EngineeringNantong University Nantong 226019 P. R. China
| | - Tian‐Shu Zhang
- School of Chemistry & Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Wen‐Juan Hao
- School of Chemistry & Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Shu‐Jiang Tu
- School of Chemistry & Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Bo Jiang
- School of Chemistry & Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| |
Collapse
|
24
|
Zhang TS, Hao WJ, Cai PJ, Li G, Tu SJ, Jiang B. Copper-Catalyzed Annulation-Cyanotrifluoromethylation of 1,6-Enynes Toward 1-Indanones via a Radical Process. Front Chem 2020; 8:234. [PMID: 32363174 PMCID: PMC7180230 DOI: 10.3389/fchem.2020.00234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/11/2020] [Indexed: 01/27/2023] Open
Abstract
A new Cu(II)-catalyzed annulation-cyanotrifluoromethylation of 1,6-enynes with Togni's reagent and trimethylsilyl cyanide (TMSCN) has been established, enabling the direct construction of trifluoromethylated 1-indanones with an all-carbon quaternary center in good yields. This reaction was performed by using low-cost Cu(OTf)2 as the catalyst and Togni's reagent as both the radical initiator and a CF3 source, providing an efficient protocol for building up an 1-indanone framework with wide functional group compatibility. The reaction mechanism was proposed through a radical triggered addition/5-exo-dig cyclization/oxidation/nucleophilic cascade.
Collapse
Affiliation(s)
- Tian-Shu Zhang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, China
| | - Wen-Juan Hao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, China
| | - Pei-Jun Cai
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, China
| | - Guigen Li
- Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Chemistry and BioMedical Sciences, Nanjing University, Nanjing, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Shu-Jiang Tu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, China
| | - Bo Jiang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
25
|
Shi HN, Huang MH, Hao WJ, Tu XC, Tu SJ, Jiang B. Synthesis of Diastereoenriched 1-Indanones via Double-Base Cooperatively Promoted 1,4-Oxo-Migration/Cyclization of β-Alkynyl Ketones. J Org Chem 2019; 84:16027-16035. [DOI: 10.1021/acs.joc.9b02525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hao-Nan Shi
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Min-Hua Huang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xing-Chao Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
26
|
Teng J, Sun S, Yu JT, Cheng J. Copper-Catalyzed Cascade Denitrogenative Transannulation/Hydrolyzation of 3-Aminoindazoles toward 2,2-Disubstituted Indanones. J Org Chem 2019; 84:15669-15676. [DOI: 10.1021/acs.joc.9b02303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiangang Teng
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Song Sun
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Jiang Cheng
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| |
Collapse
|
27
|
Bhajammanavar V, Mallik S, Baidya M. Vinylogous Annulation Cascade Toward Stereoselective Synthesis of Highly Functionalized Indanone Derivatives. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vinod Bhajammanavar
- Department of ChemistryIndian Institute of Technology Madras Chennai 600 036, Tamil Nadu India
| | - Sumitava Mallik
- Department of ChemistryIndian Institute of Technology Madras Chennai 600 036, Tamil Nadu India
| | - Mahiuddin Baidya
- Department of ChemistryIndian Institute of Technology Madras Chennai 600 036, Tamil Nadu India
| |
Collapse
|