1
|
Ilyina IV, Patrusheva OS, Goltsova VV, Christopher KM, Gatilov YV, Sidorenko AY, Agabekov VE, Salakhutdinov NF, Alabugin IV, Volcho KP. Unusual Cascade Reactions of 8-Acetoxy-6-hydroxymethyllimonene with Salicylic Aldehydes: Diverse Oxygen Heterocycles from Common Precursors. J Org Chem 2024; 89:11593-11606. [PMID: 39083794 DOI: 10.1021/acs.joc.4c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Chiral oxygen-containing heterocyclic compounds are of great interest for the development of pharmaceuticals. Monoterpenes and their derivatives are naturally abundant precursors of novel synthetic chiral oxygen-containing heterocyclic compounds. In this study, acid catalyzed reactions of salicylic aldehydes with (-)-8-acetoxy-6-hydroxymethyllimonene, readily accessible from α-pinene, leads to the formation of chiral polycyclic products of various structural types. Three of the six isolated chiral heterocyclic products obtained from salicylic aldehyde contain previously unknown polycyclic ring types. Having carried out the reaction in the presence of Brønsted or Lewis acids (Amberlyst 15, trifluoromethanesulfonic acid, trifluoroacetic acid and boron trifluoride etherate) or aluminosilicates (montmorillonite K10, halloysite nanotubes), we found that the nature of products depends on the catalyst as well as the reaction conditions (reaction time, reactant ratio, presence or absence of solvent). Detailed mechanistic insight on the complex cascade reactions for product formation is provided with extensive experimental and quantum mechanical computational studies.
Collapse
Affiliation(s)
- Irina V Ilyina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 9, Novosibirsk 630090, Russia
| | - Oksana S Patrusheva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 9, Novosibirsk 630090, Russia
| | - Victoria V Goltsova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 9, Novosibirsk 630090, Russia
| | - Kimberley M Christopher
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Yuri V Gatilov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 9, Novosibirsk 630090, Russia
| | - Alexander Yu Sidorenko
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Skaryna Str, 36, Minsk 220141, Belarus
| | - Vladimir E Agabekov
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Skaryna Str, 36, Minsk 220141, Belarus
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 9, Novosibirsk 630090, Russia
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Konstantin P Volcho
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 9, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Medvedev AG, Medved'ko AV, Vener MV, Churakov AV, Prikhodchenko PV, Vatsadze SZ. Dioxygen-halogen bonding exemplified by crystalline peroxosolvates of N, N'-bis(haloacetyl) bispidines. Phys Chem Chem Phys 2024; 26:5195-5206. [PMID: 38261463 DOI: 10.1039/d3cp05834d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The halogen bonding in molecular crystals and supramolecular assemblies has been widely investigated. Special attention is given to the molecular structures capable of simultaneously exhibiting different types of non-covalent interactions, including conventional hydrogen bonds and halogen bonds. This paper systematically analyzes crystalline peroxosolvates of bispidine-based bis-amide derivatives, containing haloacetic acid residues, namely previously reported 1,1'-(1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-iodooethanone) peroxosolvate C13H20I2N2O2·H2O2 (1) and four new crystalline compounds, 1,1'-(1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-bromoethanone) peroxosolvate C13H20Br2N2O2·H2O2 (2), 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-iodoethanone) peroxosolvate C13H20I2N2O5·0.5H2O2 (3), 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-bromoethanone) peroxosolvate C13H20Br2N2O5·H2O2 (4), and 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-chloroethanone) peroxosolvate C13H20Cl2N2O5·H2O2 (5). Compounds 2-5 were synthesized for the first time and their crystal structures were determined by single-crystal X-ray diffractometry (SCXRD). To the best of our knowledge, 3-5 are unprecedented crystalline hydrogen peroxide adducts of organic hydroperoxides (R-OOH). Short intermolecular contacts between halogen and hydroperoxo oxygen atoms were found in 1-3. The halogen bonding of C-I(Br) fragments with dioxygen species in compounds 1-3 as well as in the previously reported cocrystal of diacetone diperoxide with triodotrinitrobenzene (6) was identified through reduced density gradient analysis, Hirshfeld surface analysis, and Bader analysis of crystalline electron density. The interactions were quantified using the electron density topological properties acquired from the periodic DFT calculations and evaluated to lie in the range of 9-19 kJ mol-1. A distinctive spectral feature was revealed for this type of interaction, involving a red shift of the characteristic O-O stretching vibration by about 6 cm-1, which appeared in IR spectra as a narrow low-intensity band in the region 837-872 cm-1.
Collapse
Affiliation(s)
- Alexander G Medvedev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Aleksei V Medved'ko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Mikhail V Vener
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Andrei V Churakov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Petr V Prikhodchenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| | - Sergey Z Vatsadze
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
| |
Collapse
|
3
|
Yaremenko IA, Radulov PS, Belyakova YY, Fomenkov DI, Tsogoeva SB, Terent’ev AO. Lewis Acids and Heteropoly Acids in the Synthesis of Organic Peroxides. Pharmaceuticals (Basel) 2022; 15:ph15040472. [PMID: 35455469 PMCID: PMC9025639 DOI: 10.3390/ph15040472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
Organic peroxides are an important class of compounds for organic synthesis, pharmacological chemistry, materials science, and the polymer industry. Here, for the first time, we summarize the main achievements in the synthesis of organic peroxides by the action of Lewis acids and heteropoly acids. This review consists of three parts: (1) metal-based Lewis acids in the synthesis of organic peroxides; (2) the synthesis of organic peroxides promoted by non-metal-based Lewis acids; and (3) the application of heteropoly acids in the synthesis of organic peroxides. The information covered in this review will be useful for specialists in the field of organic synthesis, reactions and processes of oxygen-containing compounds, catalysis, pharmaceuticals, and materials engineering.
Collapse
Affiliation(s)
- Ivan A. Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
- Correspondence: (I.A.Y.); (A.O.T.)
| | - Peter S. Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Yulia Yu. Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Dmitriy I. Fomenkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen–Nürnberg, Nikolaus Fiebiger-Straße 10, 91058 Erlangen, Germany;
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
- Correspondence: (I.A.Y.); (A.O.T.)
| |
Collapse
|
4
|
Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Criegee‐Intermediate über die Ozonolyse hinaus: Ein Einblick in Synthesen und Mechanismen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zahid Hassan
- Institut für Organische Chemie (IOC) Karlsruher Institut für Technologie (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
- 3DMM2O – Exzellenzcluster (EXC-2082/1-390761711) Karlsruher Institut für Technologie (KIT) Karlsruhe Deutschland
| | - Mareen Stahlberger
- Institut für Organische Chemie (IOC) Karlsruher Institut für Technologie (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Nicolai Rosenbaum
- Institut für Organische Chemie (IOC) Karlsruher Institut für Technologie (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Stefan Bräse
- Institut für Organische Chemie (IOC) Karlsruher Institut für Technologie (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
- 3DMM2O – Exzellenzcluster (EXC-2082/1-390761711) Karlsruher Institut für Technologie (KIT) Karlsruhe Deutschland
- Institut für Biologische und Chemische Systeme –, Funktionelle molekulare Systeme (IBCS-FMS) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
5
|
Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Criegee Intermediates Beyond Ozonolysis: Synthetic and Mechanistic Insights. Angew Chem Int Ed Engl 2021; 60:15138-15152. [PMID: 33283439 PMCID: PMC8359312 DOI: 10.1002/anie.202014974] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/20/2022]
Abstract
After more than 70 years since their discovery, Criegee intermediates (CIs) are back at the forefront of modern chemistry of short-lived reactive intermediates. They play an important role in the mechanistic context of chemical synthesis, total synthesis, pharmaceuticals, and, most importantly, climate-controlling aerosol formation as well as atmospheric chemistry. This Minireview summarizes key aspects of CIs (from the mechanism of formation, for example, by ozonolysis of alkenes and photolysis methods employing diiodo and diazo compounds, to their electronic structures and chemical reactivity), highlights the most recent findings and some landmark results of gas-phase kinetics, and detection/measurements. The recent progress in synthetic and mechanistic studies in the chemistry of CIs provides a guide to illustrate the possibilities for further investigations in this exciting field.
Collapse
Affiliation(s)
- Zahid Hassan
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz-Haber-Weg 676131KarlsruheGermany
- 3DMM2O—Cluster of Excellence (EXC-2082/1–390761711)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Mareen Stahlberger
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz-Haber-Weg 676131KarlsruheGermany
| | - Nicolai Rosenbaum
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz-Haber-Weg 676131KarlsruheGermany
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz-Haber-Weg 676131KarlsruheGermany
- 3DMM2O—Cluster of Excellence (EXC-2082/1–390761711)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
- Institute of Biological and Chemical Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
6
|
Bityukov OV, Vil’ VA, Terent’ev AO. Synthesis of Acyclic Geminal Bis-peroxides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021060014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Yaremenko IA, Belyakova YY, Radulov PS, Novikov RA, Medvedev MG, Krivoshchapov NV, Korlyukov AA, Alabugin IV, Terent'ev AO. Marriage of Peroxides and Nitrogen Heterocycles: Selective Three-Component Assembly, Peroxide-Preserving Rearrangement, and Stereoelectronic Source of Unusual Stability of Bridged Azaozonides. J Am Chem Soc 2021; 143:6634-6648. [PMID: 33877842 DOI: 10.1021/jacs.1c02249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stable bridged azaozonides can be selectively assembled via a catalyst-free three-component condensation of 1,5-diketones, hydrogen peroxide, and an NH-group source such as aqueous ammonia or ammonium salts. This procedure is scalable and can produce gram quantities of bicyclic stereochemically rich heterocycles. The new azaozonides are thermally stable and can be stored at room temperature for several months without decomposition and for at least 1 year at -10 °C. The chemical stability of azaozonides was explored for their subsequent selective transformations including the first example of an aminoperoxide rearrangement that preserves the peroxide group. The amino group in aminoperoxides has remarkably low nucleophilicity and does not participate in the usual amine alkylation and acylation reactions. These observations and the 15 pKa units decrease in basicity in comparison with a typical dialkyl amine are attributed to the strong hyperconjugative nN→σ*C-O interaction with the two antiperiplanar C-O bonds. Due to the weakness of the complementary nO→σ*C-N donation from the peroxide oxygens (a consequence of "inverse α-effect"), this interaction depletes electron density from the NH moiety, protects it from oxidation, and makes it similar in properties to an amide.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, 119991 Moscow, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| |
Collapse
|
8
|
Saruengkhanphasit R, Butkinaree C, Ornnork N, Lirdprapamongkol K, Niwetmarin W, Svasti J, Ruchirawat S, Eurtivong C. Identification of new 3-phenyl-1H-indole-2-carbohydrazide derivatives and their structure-activity relationships as potent tubulin inhibitors and anticancer agents: A combined in silico, in vitro and synthetic study. Bioorg Chem 2021; 110:104795. [PMID: 33730670 DOI: 10.1016/j.bioorg.2021.104795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 01/09/2023]
Abstract
Virtual screening of commercially available molecular entities by using CDRUG, structure-based virtual screening, and similarity identified eight new derivatives of 3-phenyl-1H-indole-2-carbohydrazide with anti-proliferative activities. The molecules were tested experimentally for inhibition of tubulin polymerisation, which revealed furan-3-ylmethylene-3-phenyl-1H-indole-2-carbohydrazide (27a) as the most potent candidate. Molecule 27a was able to induce G2/M phase arrest in A549 cell line, similar to other tubulin inhibitors. Synthetic modifications of 27a were focussed on small substitutions on the furan ring, halogenation at R1 position and alteration of furyl connectivity. Derivatives 27b, 27d and 27i exhibited the strongest tubulin inhibition activities and were comparable to 27a. Bromine substitution at R1 position showed most prominent anticancer activities; derivatives 27b-27d displayed the strongest activities against HuCCA-1 cell line and were more potent than doxorubicin and the parent molecule 27a with IC50 values <0.5 μM. Notably, 27b with a 5-methoxy substitution on furan displayed the strongest activity against HepG2 cell line (IC50 = 0.34 µM), while 27d displayed stronger activity against A549 cell line (IC50 = 0.43 µM) compared to doxorubicin and 27a. Fluorine substitutions at the R1 position tended to show more modest anti-tubulin and anticancer activities, and change of 2-furyl to 3-furyl was tolerable. The new derivatives, thiophenyl 26, displayed the strongest activity against A549 cell line (IC50 = 0.19 µM), while 1-phenylethylidene 21b and 21c exhibited more modest anticancer activities with unclear mechanisms of action; 26 and 21c demonstrated G2/M phase arrest, but showed weak tubulin inhibitory properties. Molecular docking suggests the series inhibit tubulin at the colchicine site, in agreement with the experimental findings. The calculated molecular descriptors indicated that the molecules obey Lipinski's rule which suggests the molecules are drug-like structures.
Collapse
Affiliation(s)
- Rungroj Saruengkhanphasit
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Chutikarn Butkinaree
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; National Omics Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Narittira Ornnork
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | - Worawat Niwetmarin
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Commission on Higher Education (CHE), Ministry of Education, Bangkok 10400, Thailand
| | - Chatchakorn Eurtivong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Commission on Higher Education (CHE), Ministry of Education, Bangkok 10400, Thailand.
| |
Collapse
|
9
|
Kholodkov DN, Arzumanyan AV, Novikov RA, Kashin AS, Polezhaev AV, Vasil’ev VG, Muzafarov AM. Silica-Based Aerogels with Tunable Properties: The Highly Efficient BF 3-Catalyzed Preparation and Look inside Their Structure. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dmitry N. Kholodkov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
| | - Ashot V. Arzumanyan
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
| | - Roman A. Novikov
- V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Pr., Moscow 119991, Russian Federation
| | - Alexey S. Kashin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Pr., Moscow 119991, Russian Federation
| | - Alexander V. Polezhaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
- N.E. Bauman Moscow State Technical University, 5 Baumanskaya 2-ya St., Moscow 105005, Russian Federation
| | - Viktor G. Vasil’ev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
| | - Aziz M. Muzafarov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya St., Moscow 117393, Russian Federation
| |
Collapse
|
10
|
|
11
|
Radulov PS, Yaremenko IA. Application of BF 3·Et 2O in the synthesis of cyclic organic peroxides (microreview). Chem Heterocycl Compd (N Y) 2020; 56:1146-1148. [PMID: 33144737 PMCID: PMC7595082 DOI: 10.1007/s10593-020-02785-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 10/28/2022]
Abstract
A summary of recent applications of Lewis acid BF3·Et2O as a catalyst in the synthesis of cyclic organic peroxides is presented.
Collapse
Affiliation(s)
- Peter S. Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave, Moscow, 119991 Russia
| | - Ivan A. Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave, Moscow, 119991 Russia
| |
Collapse
|
12
|
Vil' VA, Barsegyan YA, Kuhn L, Ekimova MV, Semenov EA, Korlyukov AA, Terent'ev AO, Alabugin IV. Synthesis of unstrained Criegee intermediates: inverse α-effect and other protective stereoelectronic forces can stop Baeyer-Villiger rearrangement of γ-hydroperoxy-γ-peroxylactones. Chem Sci 2020; 11:5313-5322. [PMID: 34122989 PMCID: PMC8159355 DOI: 10.1039/d0sc01025a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
How far can we push the limits in removing stereoelectronic protection from an unstable intermediate? We address this question by exploring the interplay between the primary and secondary stereoelectronic effects in the Baeyer-Villiger (BV) rearrangement by experimental and computational studies of γ-OR-substituted γ-peroxylactones, the previously elusive non-strained Criegee intermediates (CI). These new cyclic peroxides were synthesized by the peroxidation of γ-ketoesters followed by in situ cyclization using a BF3·Et2O/H2O2 system. Although the primary effect (alignment of the migrating C-Rm bond with the breaking O-O bond) is active in the 6-membered ring, weakening of the secondary effect (donation from the OR lone pair to the breaking C-Rm bond) provides sufficient kinetic stabilization to allow the formation and isolation of stable γ-hydroperoxy-γ-peroxylactones with a methyl-substituent in the C6-position. Furthermore, supplementary protection is also provided by reactant stabilization originating from two new stereoelectronic factors, both identified and quantified for the first time in the present work. First, an unexpected boat preference in the γ-hydroperoxy-γ-peroxylactones weakens the primary stereoelectronic effects and introduces a ∼2 kcal mol-1 Curtin-Hammett penalty for reacquiring the more reactive chair conformation. Second, activation of the secondary stereoelectronic effect in the TS comes with a ∼2-3 kcal mol-1 penalty for giving up the exo-anomeric stabilization in the 6-membered Criegee intermediate. Together, the three new stereoelectronic factors (inverse α-effect, misalignment of reacting bonds in the boat conformation, and the exo-anomeric effect) illustrate the richness of stereoelectronic patterns in peroxide chemistry and provide experimentally significant kinetic stabilization to this new class of bisperoxides. Furthermore, mild reduction of γ-hydroperoxy-γ-peroxylactone with Ph3P produced an isolable γ-hydroxy-γ-peroxylactone, the first example of a structurally unencumbered CI where neither the primary nor the secondary stereoelectronic effect are impeded. Although this compound is relatively unstable, it does not undergo the BV reaction and instead follows a new mode of reactivity for the CI - a ring-opening process.
Collapse
Affiliation(s)
- Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect Moscow 119991 Russian Federation
| | - Yana A Barsegyan
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect Moscow 119991 Russian Federation
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Fl 32306 USA
| | - Maria V Ekimova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia 9 Miusskaya Square Moscow 125047 Russian Federation
| | - Egor A Semenov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia 9 Miusskaya Square Moscow 125047 Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 Vavilov Street Moscow 119991 Russian Federation
- Pirogov Russian National Research Medical University Moscow 117997 Russian Federation
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect Moscow 119991 Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Fl 32306 USA
| |
Collapse
|
13
|
Yaremenko IA, Coghi P, Prommana P, Qiu C, Radulov PS, Qu Y, Belyakova YY, Zanforlin E, Kokorekin VA, Wu YYJ, Fleury F, Uthaipibull C, Wong VKW, Terent'ev AO. Synthetic Peroxides Promote Apoptosis of Cancer Cells by Inhibiting P‐Glycoprotein ABCB5. ChemMedChem 2020; 15:1118-1127. [DOI: 10.1002/cmdc.202000042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Ivan A. Yaremenko
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Paolo Coghi
- School of PharmacyMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA) 113 Thailand Science Park Pathum Thani 12120 Thailand
| | - Congling Qiu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Peter S. Radulov
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Yuanqing Qu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Yulia Yu. Belyakova
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Enrico Zanforlin
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padova via Marzolo 5 35131 Padova Italy
| | - Vladimir A. Kokorekin
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Yuki Yu Jun Wu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Fabrice Fleury
- Mechanism and Regulation of DNA Repair Team UFIP CNRS UMR 6286Université de Nantes 2 chemin de la Houssinière 44322 Nantes France
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA) 113 Thailand Science Park Pathum Thani 12120 Thailand
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Alexander O. Terent'ev
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| |
Collapse
|
14
|
Elliott Q, Dos Passos Gomes G, Evoniuk CJ, Alabugin IV. Testing the limits of radical-anionic CH-amination: a 10-million-fold decrease in basicity opens a new path to hydroxyisoindolines via a mixed C-N/C-O-forming cascade. Chem Sci 2020; 11:6539-6555. [PMID: 34094120 PMCID: PMC8159354 DOI: 10.1039/c9sc06511c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/14/2020] [Indexed: 11/21/2022] Open
Abstract
An intramolecular C(sp3)-H amidation proceeds in the presence of t-BuOK, molecular oxygen, and DMF. This transformation is initiated by the deprotonation of an acidic N-H bond and selective radical activation of a benzylic C-H bond towards hydrogen atom transfer (HAT). Cyclization of this radical-anion intermediate en route to a two-centered/three-electron (2c,3e) C-N bond removes electron density from nitrogen. As this electronegative element resists such an "oxidation", making nitrogen more electron rich is key to overcoming this problem. This work dramatically expands the range of N-anions that can participate in this process by using amides instead of anilines. The resulting 107-fold decrease in the N-component basicity (and nucleophilicity) doubles the activation barrier for C-N bond formation and makes this process nearly thermoneutral. Remarkably, this reaction also converts a weak reductant into a much stronger reductant. Such "reductant upconversion" allows mild oxidants like molecular oxygen to complete the first part of the cascade. In contrast, the second stage of NH/CH activation forms a highly stabilized radical-anion intermediate incapable of undergoing electron transfer to oxygen. Because the oxidation is unfavored, an alternative reaction path opens via coupling between the radical anion intermediate and either superoxide or hydroperoxide radical. The hydroperoxide intermediate transforms into the final hydroxyisoindoline products under basic conditions. The use of TEMPO as an additive was found to activate less reactive amides. The combination of experimental and computational data outlines a conceptually new mechanism for conversion of unprotected amides into hydroxyisoindolines proceeding as a sequence of C-H amidation and C-H oxidation.
Collapse
Affiliation(s)
- Quintin Elliott
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Gabriel Dos Passos Gomes
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Christopher J Evoniuk
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Florida 32306 USA
| |
Collapse
|
15
|
Ilovaisky AI, Merkulova VM, Vil' VA, Chernoburova EI, Shchetinina MA, Loguzov SD, Dmitrenok AS, Zavarzin IV, Terent'ev AO. Regioselective Baeyer-Villiger Oxidation of Steroidal Ketones to Lactones Using BF3/H2O2. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
- All-Russian Research Institute for Phytopathology; 143050 Moscow Russian Federation
| | - Valentina M. Merkulova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Vera A. Vil'
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
- All-Russian Research Institute for Phytopathology; 143050 Moscow Russian Federation
| | - Elena I. Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Marina A. Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Sergey D. Loguzov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Andrey S. Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Igor V. Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
- All-Russian Research Institute for Phytopathology; 143050 Moscow Russian Federation
- D.I. Mendeleev University of Chemical Technology of Russia; 125047 Moscow Russian Federation
| |
Collapse
|
16
|
Vil' VA, Barsegyan YA, Barsukov DV, Korlyukov AA, Alabugin IV, Terent'ev AO. Peroxycarbenium Ions as the "Gatekeepers" in Reaction Design: Assistance from Inverse Alpha-Effect in Three-Component β-Alkoxy-β-peroxylactones Synthesis. Chemistry 2019; 25:14460-14468. [PMID: 31487079 DOI: 10.1002/chem.201903752] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/03/2019] [Indexed: 01/12/2023]
Abstract
Stereoelectronic interactions control reactivity of peroxycarbenium cations, the key intermediates in (per)oxidation chemistry. Computational analysis suggests that alcohol involvement as a third component in the carbonyl/peroxide reactions remained invisible due to the absence of sufficiently deep kinetic traps needed to prevent the escape of mixed alcohol/peroxide products to the more stable bisperoxides. Synthesis of β-alkoxy-β-peroxylactones, a new type of organic peroxides, was accomplished by interrupting a thermodynamically driven peroxidation cascade. The higher energy β-alkoxy-β-peroxylactones do not transform into the more stable bisperoxides due to the stereoelectronically imposed instability of a cyclic peroxycarbenium intermediate as a consequence of amplified inverse alpha-effect. The practical consequence of this fundamental finding is the first three-component cyclization/condensation of β-ketoesters, H2 O2 , and alcohols that provides β-alkoxy-β-peroxylactones in 15-80 % yields.
Collapse
Affiliation(s)
- Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation
| | - Yana A Barsegyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation
| | - Denis V Barsukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow, 119991, Russian Federation.,Pirogov Russian National Research Medical University, Moscow, 117997, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, 32309, USA
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation
| |
Collapse
|
17
|
Addition of N-hydroxyphthalimide and atmospheric oxygen to styrenes using tert-butyl hydroperoxide as a radical initiator. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2577-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Vil VA, Gloriozova TA, Terent'ev AO, Savidov N, Dembitsky VM. Hydroperoxides derived from marine sources: origin and biological activities. Appl Microbiol Biotechnol 2019; 103:1627-1642. [PMID: 30623202 DOI: 10.1007/s00253-018-9560-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
Hydroperoxides are a small and interesting group of biologically active natural marine compounds. All these metabolites contain a group (R-O-O-H). In this mini-review, studies of more than 80 hydroperoxides isolated from bacteria, fungi, algae, and marine invertebrates are described. Hydroperoxides from the red, brown, and green algae exhibit high antineoplastic, anti-inflammatory, and antiprotozoal activity with a confidence of 73 to 94%. Hydroperoxides produced by soft corals showed antineoplastic and antiprotozoal activity with confidence from 81 to 92%. Metabolites derived from sea sponges, mollusks, and other invertebrates showed antineoplastic and antiprotozoal (Plasmodium) activity with confidence from 80 to 90%.
Collapse
Affiliation(s)
- Vera A Vil
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, Russia, 119991
| | | | - Alexander O Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, Russia, 119991
| | - Nick Savidov
- Centre for Applied Research and Innovation, Lethbridge College, 3000 College Drive South, Lethbridge, AB, T1K 1L6, Canada
| | - Valery M Dembitsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, Russia, 119991. .,Centre for Applied Research and Innovation, Lethbridge College, 3000 College Drive South, Lethbridge, AB, T1K 1L6, Canada. .,Biochemical Laboratory, National Scientific Center of Marine Biology, 17 Palchevsky Str., Vladivostok, Russia, 690041.
| |
Collapse
|
19
|
Arp FF, Ahn SH, Bhuvanesh N, Blümel J. Selective synthesis and stabilization of peroxides via phosphine oxides. NEW J CHEM 2019. [DOI: 10.1039/c9nj04858h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
MEKPO (methyl ethyl ketone peroxide) and other peroxides can be synthesized selectively and stabilized as hydrogen-bonded phosphine oxide adducts.
Collapse
Affiliation(s)
- Fabian F. Arp
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Shin Hye Ahn
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Janet Blümel
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| |
Collapse
|