1
|
Wilson N, Palmer WM, Slimp MK, Simmons EM, Joannou MV, Albaneze-Walker J, Ganley JM, Frantz DE. Ni-Catalyzed Cyanation of (Hetero)Aryl Electrophiles Using the Nontoxic Cyanating Reagent K 4[Fe(CN) 6]. ACS Catal 2025; 15:6459-6465. [PMID: 40270882 PMCID: PMC12012830 DOI: 10.1021/acscatal.5c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
A Ni-catalyzed cyanation of aryl halides using potassium ferrocyanide (K4[Fe(CN)6]) as a nontoxic cyanide source has been developed. Key features of this method include the use of biphasic aqueous conditions to overcome the innate insolubility of K4[Fe(CN)6] in organic solvents and the use of a bench-stable Ni(II) precatalyst combined with a commercially available JosiPhos ligand that enhances the practicality and scalability of this cyanation reaction. The inclusion of the acidic additive tetrabutylammonium hydrogen sulfate was found to improve the reaction rate and conversion. The initial scope of this Ni-catalyzed cyanation reaction was successfully demonstrated on a range of (hetero)aryl bromides, chlorides, and sulfamates using catalyst loadings as low as 2.5 mol %. This base-metal-catalyzed methodology was further translated to the decagram synthesis of a pharmaceutical intermediate, usurping the prior Pd-catalyzed process that employed a hazardous cyanide source and solvent pair (Zn(CN)2, DMAc).
Collapse
Affiliation(s)
- Nicolas
A. Wilson
- The
Max and Minnie Tomerlin Voelcker Laboratory for Organic Chemistry,
Department of Chemistry, The University
of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - William M. Palmer
- The
Max and Minnie Tomerlin Voelcker Laboratory for Organic Chemistry,
Department of Chemistry, The University
of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Meredith K. Slimp
- The
Max and Minnie Tomerlin Voelcker Laboratory for Organic Chemistry,
Department of Chemistry, The University
of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Eric M. Simmons
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, NJ 08903, United States
| | - Matthew V. Joannou
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, NJ 08903, United States
| | | | - Jacob M. Ganley
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, NJ 08903, United States
| | - Doug E. Frantz
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Missouri, St. Louis 63110, United States
| |
Collapse
|
2
|
de Jesus R, Hiesinger K, van Gemmeren M. Preparative Scale Applications of C-H Activation in Medicinal Chemistry. Angew Chem Int Ed Engl 2023; 62:e202306659. [PMID: 37283078 DOI: 10.1002/anie.202306659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/08/2023]
Abstract
C-H activation is an attractive methodology to increase molecular complexity without requiring substrate prefunctionalization. In contrast to well-established cross-coupling methods, C-H activation is less explored on large scales and its use in the production of pharmaceuticals faces substantial hurdles. However, the inherent advantages, such as shorter synthetic routes and simpler starting materials, motivate medicinal chemists and process chemists to overcome these challenges, and exploit C-H activation steps for the synthesis of pharmaceutically relevant compounds. In this review, we will cover examples of drugs/drug candidates where C-H activation has been implemented on a preparative synthetic scale (range between 355 mg and 130 kg). The optimization processes will be described, and each example will be examined in terms of its advantages and disadvantages, providing the reader with an in-depth understanding of the challenges and potential of C-H activation methodologies in the production of pharmaceuticals.
Collapse
Affiliation(s)
- Rita de Jesus
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Kerstin Hiesinger
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Manuel van Gemmeren
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| |
Collapse
|
3
|
Yao Y, Su S, Wu N, Wu W, Jiang H. The cobalt( ii)-catalyzed acyloxylation of picolinamides with bifunctional silver carboxylate via C–H bond activation. Org Chem Front 2022. [DOI: 10.1039/d2qo01131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cobalt(ii)-catalyzed C–H bond acyloxylation of picolinamides with bifunctional silver carboxylate has been developed. The mild and practical esterification provides an atom-economic route to access to polysubstituted naphthalene compounds.
Collapse
Affiliation(s)
- Yongqi Yao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Shaoting Su
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Nan Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Abstract
In the past decade, the field of organic synthesis has witnessed tremendous advancements in the areas of photoredox catalysis, electrochemistry, C-H activation, reductive coupling and flow chemistry. While these methods and technologies offer many strategic advantages in streamlining syntheses, their application on the process scale is complicated by several factors. In this Review, we discuss the challenges that arise when these reaction classes and/or flow chemistry technology are taken from a research laboratory operating at the milligram scale to a reactor capable of producing kilograms of product. We discuss how these challenges have been overcome through chemical and engineering solutions. Specifically, this Review will highlight key examples that have led to the production of multi-hundred-gram to kilogram quantities of active pharmaceutical ingredients or their intermediates and will provide insight on the scaling-up process to those developing new technologies and reactions.
Collapse
|
5
|
Joe CL, Inankur B, Chadwick J, Lou S, Nye J, Strotman NA, DelMonte AJ. Development of a Scalable Negishi Cross-Coupling Process for the Preparation of 2-Chloro-5-(1-(tetrahydro-2 H-pyran-2-yl)-1 H-pyrazol-5-yl)aniline. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Candice L. Joe
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Bahar Inankur
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - James Chadwick
- Chemical Process Development, Bristol Myers Squibb, Reeds Lane, Moreton, Wirral CH46 1QW, United Kingdom
| | - Sha Lou
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jeffrey Nye
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Neil A. Strotman
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Albert J. DelMonte
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
6
|
Piou T, Slutskyy Y, Kevin NJ, Sun Z, Xiao D, Kong J. Direct Arylation of Azoles Enabled by Pd/Cu Dual Catalysis. Org Lett 2021; 23:1996-2001. [PMID: 33667104 DOI: 10.1021/acs.orglett.1c00100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A practical approach toward the synthesis of 2-arylazoles via direct arylation is described. The transformation relies on a Pd/Cu cocatalyst system that operates with low catalyst loadings. The reaction conditions were found to be tolerant of a wide range of functional groups and nitrogen-containing heterocycles commonly employed in a drug discovery setting.
Collapse
Affiliation(s)
- Tiffany Piou
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yuriy Slutskyy
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Nancy J Kevin
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Zhongxiang Sun
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Dong Xiao
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jongrock Kong
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
7
|
Kelly CB, Padilla-Salinas R. Late stage C-H functionalization via chalcogen and pnictogen salts. Chem Sci 2020; 11:10047-10060. [PMID: 34094266 PMCID: PMC8162414 DOI: 10.1039/d0sc03833d] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/06/2020] [Indexed: 01/12/2023] Open
Abstract
Late-stage functionalization (LSF) of heteroarenes can dramatically accelerate SAR studies by enabling the installation of functional groups that would otherwise complicate a synthetic sequence. Although heteroaryl halides and boronic esters have well-established chemistries for LSF, alternatives that enable site-selective C-H functionalization are highly attractive. Recently, three unrelated cationic groups (phosphonium, pyridinium, and thianthrenium), which can replace C-H bonds late stage, have been identified as precursors to various functional groups. This review will discuss the synthesis and application of these three salts with an emphasis on their use for LSF and application to medicinal chemistry.
Collapse
Affiliation(s)
- Christopher B Kelly
- Discovery Process Research, Janssen Research & Development LLC 1400 McKean Road Spring House Pennsylvania 19477 USA
| | - Rosaura Padilla-Salinas
- Discovery Process Research, Janssen Research & Development LLC 1400 McKean Road Spring House Pennsylvania 19477 USA
| |
Collapse
|
8
|
Yao Y, Lin Q, Yang W, Yang W, Gu F, Guo W, Yang D. Cobalt(II)-Catalyzed [4+2] Annulation of Picolinamides with Alkynes via C-H Bond Activation. Chemistry 2020; 26:5607-5610. [PMID: 32045038 DOI: 10.1002/chem.202000411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/06/2020] [Indexed: 11/08/2022]
Abstract
A cobalt(II)-catalyzed [4+2] annulation of picolinamides with alkynes via C-H bond activation has been developed. The operationally simple annulation reaction allows for the synthesis of acyl-substituted 1H-benzoquinoline bearing multiple aromatic rings (up to 96 % yield) without co-oxidant or other oxidation factors under mild conditions. Several control experiments were carried out. This practical [4+2] annulation provides an efficient route to access highly functionalized compounds.
Collapse
Affiliation(s)
- Yongqi Yao
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China, Normal University, Guangzhou, 510006, P. R. China
| | - Qifu Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China, Normal University, Guangzhou, 510006, P. R. China
| | - Wen Yang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China, Normal University, Guangzhou, 510006, P. R. China
| | - Weitao Yang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China, Normal University, Guangzhou, 510006, P. R. China
| | - Fenglong Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China, Normal University, Guangzhou, 510006, P. R. China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Dingqiao Yang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China, Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
9
|
Yuan S, Chang J, Yu B. Construction of Biologically Important Biaryl Scaffolds through Direct C–H Bond Activation: Advances and Prospects. Top Curr Chem (Cham) 2020; 378:23. [DOI: 10.1007/s41061-020-0285-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
|
10
|
Yu M, Strotman NA, Savage SA, Leung S, Ramirez A. A Practical and Robust Multistep Continuous Process for Manufacturing 5-Bromo- N-( tert-butyl)pyridine-3-sulfonamide. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miao Yu
- Chemical & Synthetic Development, Global Product Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Neil A. Strotman
- Chemical & Synthetic Development, Global Product Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Scott A. Savage
- Chemical & Synthetic Development, Global Product Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Simon Leung
- Research and Development External Manufacturing, Global Product Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Antonio Ramirez
- Chemical & Synthetic Development, Global Product Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
11
|
Wisniewski SR, Savage SA, Romero EO, Eastgate MD, Tan Y, Simmons EM, Plata RE, Sowa JR, Blackmond DG. Utilizing Native Directing Groups: Mechanistic Understanding of a Direct Arylation Leads to Formation of Tetracyclic Heterocycles via Tandem Intermolecular, Intramolecular C-H Activation. J Org Chem 2019; 84:7961-7970. [PMID: 31117568 DOI: 10.1021/acs.joc.9b00823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mechanistic study on a direct arylation using a native picolylamine directing group is reported. Kinetic studies determined the concentration dependence of substrates and catalysts, as well as catalyst degradation, which led to the development of a new set of reaction conditions capable of affording a robust kinetic profile. During reaction optimization, a small impurity was observed, which was determined to be a dual C-H activation product. A second set of conditions were found to flip the selectivity of the C-H activation to form this tetracycle in high yield. A catalytic cycle is proposed for the intermolecular/intramolecular C-H activation pathway.
Collapse
Affiliation(s)
- Steven R Wisniewski
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive, New Brunswick , New Jersey 08903 , United States
| | - Scott A Savage
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive, New Brunswick , New Jersey 08903 , United States
| | - Evan O Romero
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive, New Brunswick , New Jersey 08903 , United States
| | - Martin D Eastgate
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive, New Brunswick , New Jersey 08903 , United States
| | - Yichen Tan
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive, New Brunswick , New Jersey 08903 , United States
| | - Eric M Simmons
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive, New Brunswick , New Jersey 08903 , United States
| | - R Erik Plata
- Department of Chemistry , Scripps Research , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - John R Sowa
- Department of Chemistry , Scripps Research , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Donna G Blackmond
- Department of Chemistry , Scripps Research , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|