1
|
Guo CY, Chen JZ, Liu WT, Mei H, Meng J, Chen JP. Organocatalytic enantioselective decarboxylative protonation of α-alkyl-α-aryl malonate monoesters. Chem Commun (Camb) 2024; 60:3854-3857. [PMID: 38497353 DOI: 10.1039/d3cc06018g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In contrast to the well-established enzymatic enantioselective decarboxylative protonation (EDP), the corresponding chemocatalytic reactions of acyclic malonic acid derivatives remain challenging. Herein, we developed a biomimetic EDP of α-alkyl-α-aryl malonate monoesters using a chiral 1,2-trans-diaminocyclohexane-based N-sulfonamide as an organocatalyst. The method demonstrates excellent chemical yields, good enantioselectivity, mild reaction conditions, and the generation of only CO2 as waste.
Collapse
Affiliation(s)
- Cong-Ying Guo
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jia-Zheng Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Wen-Ting Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hao Mei
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jie Meng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jian-Ping Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Liu X, Shi F, Jin C, Liu B, Lei M, Tan J. Stereospecific synthesis of monofluoroalkenes and their deuterated analogues via Ag-catalyzed decarboxylation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Dong M, Duan XY, Li Y, Liu B, Qi J. Highly enantioselective δ-protonation and formal [3 + 3] annulation promoted by N-heterocyclic carbene. Org Chem Front 2022. [DOI: 10.1039/d2qo00257d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chiral NHC catalyst reacts with α,β-γ,δ-diunsaturated aldehydes to generate an extended Breslow intermediate. Upon δ-protonation and tautomerization, the resulting α,β-unsaturated acyl azolium undergoes [3 + 3] annulation with enamines to afford various dihydropyridinones.
Collapse
Affiliation(s)
- Mengdie Dong
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Xiao-Yong Duan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| | - Yanting Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Binghao Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Jing Qi
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| |
Collapse
|
4
|
Khan J, Tyagi A, Yadav N, Mahato R, Hazra CK. Lambert Salt-Initiated Development of Friedel-Crafts Reaction on Isatin to Access Distinct Derivatives of Oxindoles. J Org Chem 2021; 86:17833-17847. [PMID: 34874162 DOI: 10.1021/acs.joc.1c02058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Herein, a mild metal-free and efficacious route for the synthesis of biologically important 3-aryl oxindole derivatives is described. Using Lambert salt-initiated hydroarylation of isatin, a diverse array of monoarylated products, symmetrical/unsymmetrical double-arylated products, and deoxygenated hydroarylated products could be synthesized from the single starting substrate in good to excellent yields. A preliminary mechanistic study revealed that the reaction proceeds via a monoarylated product followed by a nucleophilic attack by another electron-rich arene nucleophile under mild conditions. The potential of newly synthesized symmetric/unsymmetric 3,3-disubstituted oxindole, 3-substituted 3-hydroxy oxindoles, 3,3-di(indolyl)indolin-2-ones, and α-aryl oxindoles as valuable building blocks is further illustrated.
Collapse
Affiliation(s)
- Jabir Khan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aparna Tyagi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rina Mahato
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy K Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Cheng X, Li T, Gutman K, Zhang L. Chiral Bifunctional Phosphine Ligand-Enabled Cooperative Cu Catalysis: Formation of Chiral α,β-Butenolides via Highly Enantioselective γ-Protonation. J Am Chem Soc 2021; 143:10876-10881. [PMID: 34264076 DOI: 10.1021/jacs.1c05781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
α,β-Butenolides with ≥96% enantiomeric excess are synthesized from β,γ-butenolides via a novel Cu(I)-ligand cooperative catalysis. The reaction is enabled by a chiral biphenyl-2-ylphosphine ligand featuring a remote tertiary amino group. Density functional theory studies support the cooperation between the metal center and the ligand basic amino group during the initial soft deprotonation and the key asymmetric γ-protonation. Remarkably, other coinage metals, that is, Ag and Au, can readily assume the same role as Cu in this asymmetric isomerization chemistry.
Collapse
Affiliation(s)
- Xinpeng Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Tianyou Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kaylaa Gutman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Toda Y, Yoshida T, Arisue K, Fukushima K, Esaki H, Kikuchi A, Suga H. Enantioselective Protonation of Cyclic Carbonyl Ylides by Chiral Lewis Acid Assisted Alcohols. Chemistry 2021; 27:10578-10582. [PMID: 34002420 DOI: 10.1002/chem.202101491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/09/2022]
Abstract
Chiral Lewis acid-catalyzed asymmetric alcohol addition reactions to cyclic carbonyl ylides generated from N-(α-diazocarbonyl)-2-oxazolidinones featuring a dual catalytic system are reported. Construction of a chiral quaternary heteroatom-substituted carbon center was accomplished in which the unique heterobicycles were obtained in good yields with high stereoselection. The alcohol adducts were successfully converted to optically active oxazolidine-2,4-diones by hydrolysis. Mechanistic studies by DFT calculations revealed that alcohols could be activated by Lewis acids, enabling enantioselective protonation of the carbonyl ylides.
Collapse
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
| | - Takayuki Yoshida
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
| | - Kaoru Arisue
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
| | - Kazuaki Fukushima
- Department of Chemistry, Hyogo College of Medicine, 1-1 Mukogawa-Cho, 663-8501, Nishinomiya, Hyogo, Japan
| | - Hiroyoshi Esaki
- Department of Chemistry, Hyogo College of Medicine, 1-1 Mukogawa-Cho, 663-8501, Nishinomiya, Hyogo, Japan
| | - Ayaka Kikuchi
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
| | - Hiroyuki Suga
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
| |
Collapse
|
7
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
8
|
Doi R, Hayashi K, Sato Y. Palladium-catalyzed Decarboxylative α-Polyfluoroarylation of Ketones. CHEM LETT 2021. [DOI: 10.1246/cl.210092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryohei Doi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Kanako Hayashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Yoshihiro Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
9
|
Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem Rev 2021; 121:4373-4505. [PMID: 33739109 PMCID: PMC8576828 DOI: 10.1021/acs.chemrev.0c00736] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/30/2022]
Abstract
This Review compiles the evolution, mechanistic understanding, and more recent advances in enantioselective Pd-catalyzed allylic substitution and decarboxylative and oxidative allylic substitutions. For each reaction, the catalytic data, as well as examples of their application to the synthesis of more complex molecules, are collected. Sections in which we discuss key mechanistic aspects for high selectivity and a comparison with other metals (with advantages and disadvantages) are also included. For Pd-catalyzed asymmetric allylic substitution, the catalytic data are grouped according to the type of nucleophile employed. Because of the prominent position of the use of stabilized carbon nucleophiles and heteronucleophiles, many chiral ligands have been developed. To better compare the results, they are presented grouped by ligand types. Pd-catalyzed asymmetric decarboxylative reactions are mainly promoted by PHOX or Trost ligands, which justifies organizing this section in chronological order. For asymmetric oxidative allylic substitution the results are grouped according to the type of nucleophile used.
Collapse
Affiliation(s)
- Oscar Pàmies
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Discovery
Sciences, Janssen Research and Development, Janssen-Cilag, S.A. Jarama 75A, 45007, Toledo, Spain
| | - Jinju James
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric Judge
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Moberg
- KTH
Royal Institute of Technology, Department of Chemistry, Organic Chemistry, SE 100 44 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Andreas Pfaltz
- Department
of Chemistry, University of Basel. St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona. 08028 Barcelona, Spain
| | - Montserrat Diéguez
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
10
|
Rokade BV, Guiry PJ. Synthesis of α-Aryl Oxindoles by Friedel-Crafts Alkylation of Arenes. J Org Chem 2020; 85:6172-6180. [PMID: 32259447 DOI: 10.1021/acs.joc.0c00370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Aryl oxindoles are accessed from isatin via a two-step procedure involving a phospha-Brook rearrangement and a Friedel-Crafts alkylation in a one-pot procedure. The use of 1,1,1,3,3,3-hexafluoro-2-propanol as solvent significantly extended the reaction substrate scope to include relatively less electron-rich arenes including benzene. This new alkylation method is fast and straightforward and allows for the direct introduction of the oxindole moiety onto a range of aromatic compounds including phenols. Additionally, the application of arylated products was shown in decarboxylative asymmetric allylation and protonation.
Collapse
Affiliation(s)
- Balaji V Rokade
- Centre for Synthesis and Chemical Biology (CSCB), Synthesis and Solid State Pharmaceutical Centre (SSPC), School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology (CSCB), Synthesis and Solid State Pharmaceutical Centre (SSPC), School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| |
Collapse
|
11
|
Abstract
The substitution reaction of glycal (1,2-unsaturated cyclic carbohydrate derivative)
at C1 by allyl rearrangement in the presence of a catalyst is called Ferrier type-I rearrangement.
2,3-Unsaturated glycosides are usually obtained from glycals through Ferrier
type-I rearrangement, and their potential biological activities have gradually attracted
widespread attention of researchers. This review summarizes recent advances (2009-
present) in the application of various types of catalysts to Ferrier type-I rearrangement reactions,
including their synthesis, mechanism, and application of 2, 3-unsaturated glycosides.
Collapse
Affiliation(s)
- Nan Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhengliang Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Youxian Dong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiaoxia Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiaxia Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jianbo Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
12
|
Filho MA, de Santana LLB, Rivelino R, Cunha S. A theoretical investigation on the nucleophilic behavior of Meldrum’s acid linked to experimental evidences. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Duchemin N, Buccafusca R, Daumas M, Ferey V, Arseniyadis S. A Unified Strategy for the Synthesis of Difluoromethyl- and Vinylfluoride-Containing Scaffolds. Org Lett 2019; 21:8205-8210. [PMID: 31566980 DOI: 10.1021/acs.orglett.9b02887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we report a general method for the synthesis of quaternary and tertiary difluoromethylated compounds and their vinylfluoride analogues. The strategy, which relies on a two-step sequence featuring a C-selective electrophilic difluoromethylation and either a palladium-catalyzed decarboxylative protonation or a Krapcho decarboxylation, is practical, scalable, and high yielding. Considering the generality of the method and the attractive properties offered by the difluoromethyl group, this approach provides a valuable tool for late-stage functionalization and drug development.
Collapse
Affiliation(s)
- Nicolas Duchemin
- Queen Mary University of London , School of Biological and Chemical Sciences , Mile End Road , London E1 4NS , United Kingdom
| | - Roberto Buccafusca
- Queen Mary University of London , School of Biological and Chemical Sciences , Mile End Road , London E1 4NS , United Kingdom
| | - Marc Daumas
- Sanofi Chimie , Route d'Avignon, 30390 Aramon , France
| | - Vincent Ferey
- Sanofi R&D , 371 rue du Professeur Blayac , 34080 Montpellier , France
| | - Stellios Arseniyadis
- Queen Mary University of London , School of Biological and Chemical Sciences , Mile End Road , London E1 4NS , United Kingdom
| |
Collapse
|
14
|
Trost BM, Schultz JE, Bai Y. Development of Chemo‐ and Enantioselective Palladium‐Catalyzed Decarboxylative Asymmetric Allylic Alkylation of α‐Nitroesters. Angew Chem Int Ed Engl 2019; 58:11820-11825. [DOI: 10.1002/anie.201904034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| | | | - Yu Bai
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| |
Collapse
|
15
|
Trost BM, Schultz JE, Bai Y. Development of Chemo‐ and Enantioselective Palladium‐Catalyzed Decarboxylative Asymmetric Allylic Alkylation of α‐Nitroesters. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| | | | - Yu Bai
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| |
Collapse
|
16
|
O’Broin CQ, Guiry PJ. Construction of All-Carbon Quaternary Stereocenters by Palladium-Catalyzed Decarboxylative Propargylation. Org Lett 2019; 21:5402-5406. [DOI: 10.1021/acs.orglett.9b01493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Calvin Q. O’Broin
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
17
|
James J, Jackson M, Guiry PJ. Palladium‐Catalyzed Decarboxylative Asymmetric Allylic Alkylation: Development, Mechanistic Understanding and Recent Advances. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801575] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinju James
- Centre for Synthesis and Chemical BiologySchool of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| | - Mark Jackson
- Centre for Synthesis and Chemical BiologySchool of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| | - Patrick J. Guiry
- Centre for Synthesis and Chemical BiologySchool of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
18
|
Doi R, Yabuta A, Sato Y. Palladium-Catalyzed Decarboxylative Alkynylation of α-Acyloxyketones by C(sp 3 )-O Bond Cleavage. Chemistry 2019; 25:5884-5888. [PMID: 30805979 DOI: 10.1002/chem.201900582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/23/2019] [Indexed: 11/12/2022]
Abstract
Palladium-catalyzed decarboxylative alkynylation of α-acyloxyketones triggered by C(sp3 )-O bond cleavage is disclosed. The decarboxylation strategy featuring a neutral reaction condition enabled an unprecedent catalytic alkynylation of a ketone enolate. The reaction was applied to a variety of substrates, giving desired products in good yields. We successfully obtained X-ray crystallography of a new palladium-enolate intermediate that was synthesized by a reaction of [Pd(cod)(CH2 TMS)2 ] with XPhos and α-acyloxyketone at room temperature, indicating facile C(sp3 )-O bond disconnection.
Collapse
Affiliation(s)
- Ryohei Doi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Akimasa Yabuta
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yoshihiro Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
19
|
James J, Akula R, Guiry PJ. Pd-Catalyzed Decarboxylative Asymmetric Protonation (DAP) Using Chiral PHOX Ligands vs. Chiral Ligand-Free Conditions Employing (1R
,2S
)(-)-Ephedrine - A Comparison Study. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinju James
- Centre for Synthesis and Chemical Biology; School of Chemistry; University College Dublin; Belfield 4 Dublin Ireland
| | - Ramulu Akula
- Synthesis & Solid State Pharmaceutical Centre (SSPC); School of Chemistry; University College Dublin; Belfield 4 Dublin Ireland
| | - Patrick J. Guiry
- Centre for Synthesis and Chemical Biology; School of Chemistry; University College Dublin; Belfield 4 Dublin Ireland
- Synthesis & Solid State Pharmaceutical Centre (SSPC); School of Chemistry; University College Dublin; Belfield 4 Dublin Ireland
| |
Collapse
|