1
|
Casasús P, Mestre J, Radłowska R, Bernús M, Boutureira O. Electrophilic glycoluril-based reagents for atom-economic thiocyanation and selenocyanation of (hetero)arenes. Org Biomol Chem 2025; 23:4463-4470. [PMID: 40223445 DOI: 10.1039/d5ob00536a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Two electrophilic glycoluril-based N-XCN reagents (X = S, Se) were developed for introducing SCN/SeCN groups into aromatic substrates, including the late-stage modification of bioactive molecules. Their application produces minimal waste, enables simple purification, and offers potential for reagent regeneration. Additionally, their compatibility with green solvents and flow technology was demonstrated. The sustainability of the process was evaluated using green metrics and Ecoscale values, emphasizing the complementary roles of the reagents and solvent recovery in enhancing atom economy and reducing waste.
Collapse
Affiliation(s)
- Paula Casasús
- Departament de Química Analítica i Química Orgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| | - Jordi Mestre
- Departament de Química Analítica i Química Orgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| | - Roksana Radłowska
- Departament de Química Analítica i Química Orgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| | - Miguel Bernús
- Departament de Química Analítica i Química Orgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| |
Collapse
|
2
|
Yisimayili N, Li ZF, Liu T, Lu CD. Stereoselective Electrophilic Sulfenylation of β,β-Disubstituted Enesulfinamides: Asymmetric Construction of Less Accessible Acyclic α,α-Disubstituted α-Sulfenylated Ketimines. Org Lett 2024; 26:5978-5983. [PMID: 38967298 DOI: 10.1021/acs.orglett.4c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Current methods for the asymmetric α-sulfenylation of carbonyls cannot be applied to acyclic carbonyls that have two similar substituents at the α-position. This research demonstrated that the electrophilic sulfenylation of geometry-defined acyclic β,β-disubstituted enesulfinamides using S-aryl or S-alkyl benzenethiosulfonates can be highly stereoselective. This process results in enantioenriched α,α-disubstituted α-sulfenylated ketone surrogates with sulfur-containing acyclic tetrasubstituted carbon stereocenters bearing two electronically and sterically similar substituents (e.g., methyl and ethyl). Furthermore, by employing the corresponding stereoisomers of enensulfinamides, any of the four stereoisomers of α-sulfenylated ketimines can be selectively accessed.
Collapse
Affiliation(s)
| | - Zheng-Fei Li
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Tao Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Chong-Dao Lu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
3
|
Zhang XX, Wang PK, Zhang SL. Synthesis of ɑ-Aryl-oxindoles via Grignard Reaction with Isatin in the Presence of Diphenyl Phosphite. Chem Asian J 2024; 19:e202400297. [PMID: 38700937 DOI: 10.1002/asia.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/03/2024] [Indexed: 06/10/2024]
Abstract
A protocol has been developed for the synthesis of α-aryl-oxindoles from isatin and Grignard reagents in the presence of diphenyl phosphite for the first time. This reaction was conveniently carried out under mild conditions in a one-pot fashion with moderate to excellent yields.
Collapse
Affiliation(s)
- Xinxin X Zhang
- Oxford Suzhou Centre for Advanced Research Building A, 388 Ruo Shui Road, Suzhou Industrial Park, Jiangsu, 215123, P. R. China
| | - Pengkai K Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou, 215123, People's Republic of China
| | - Songlin L Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou, 215123, People's Republic of China
| |
Collapse
|
4
|
Hua R, Wang Q, Yin H, Chen FX. Organophotocatalytic Remote Thiocyanation Reaction via Ring-Opening Functionalization of Cycloalkanols. Chemistry 2024; 30:e202400453. [PMID: 38634800 DOI: 10.1002/chem.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
The remote C(sp3)-SCN bond formation via ring-opening functionalization of cycloalkanols with N-thiocyanatosaccharin as the precursor of SCN radicals and pyrylium salt as the organic photocatalyst under visible light has been developed. Thus, various terminal keto thiocyanates were prepared without transition metals and oxidants in moderate to good yields. The simplicity, wide substrate scope and mild conditions feature its synthetic application capability.
Collapse
Affiliation(s)
- Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Qing Wang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| |
Collapse
|
5
|
Wang Q, Shao C, Hua R, Yin H, Chen FX. Me 3SiBr-promoted cascade electrophilic thiocyanation/cyclization of ortho-alkynylanilines to synthesize indole derivatives. Org Biomol Chem 2024; 22:4031-4035. [PMID: 38690868 DOI: 10.1039/d4ob00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A Lewis acid-promoted electrophilic thiocyanation/cyclization of ortho-alkynylanilines for the synthesis of indole derivatives has been developed. The reaction utilizes Me3SiBr as the Lewis acid and N-thiocyanatosuccinimide as the thiocyanation reagent. A series of 2-aryl-3-thiocyanato indoles were prepared in moderate to high yields under mild conditions without metals and oxidants. It provides an efficient protocol for the construction of the indole skeleton and C-SCN and C-N bonds in one step as well.
Collapse
Affiliation(s)
- Qing Wang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Chukai Shao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| |
Collapse
|
6
|
Karmaker PG, Yang X. Recent Advancement on the Indirect or Combined Alternative Thiocyanate Sources for the Construction of S-CN Bonds. CHEM REC 2024; 24:e202300312. [PMID: 38085121 DOI: 10.1002/tcr.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Indexed: 03/10/2024]
Abstract
The process of thiocyanation is a notable chemical conversion owing to the extensive range of applications associated with thiocyanate compounds in the field of organic chemistry. In past centuries, the thiocyanation reaction incorporated metal thiocyanates or thiocyanate salts as sources of thiocyanate, which are environmentally detrimental and undesirable. In recent literature, there have been numerous instances where combined or indirect alternative sources of thiocyanate have been employed as agents for thiocyanation, showcasing their noteworthy applications. The present literature review focuses on elucidating the ramifications associated with the utilization of indirect or combined alternative sources of thiocyanate in various thiocyanation reactions.
Collapse
Affiliation(s)
- Pran Gopal Karmaker
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| |
Collapse
|
7
|
Banerjee S, Vanka K. The Role of Aromatic Alcohol Additives on Asymmetric Organocatalysis Reactions: Insights from Theory. Chem Asian J 2024; 19:e202300997. [PMID: 38270228 DOI: 10.1002/asia.202300997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
The presence of an aromatic additive has been seen to enhance, often significantly, the enantioselectivity and yield in asymmetric organocatalysis. Considering their success across a dizzying range of organocatalysts and organic transformations, it would seem unlikely that a common principle exists for their functioning. However, the current investigations with DFT suggest a general principle: the phenolic additive sandwiches itself, through hydrogen bonding and π⋅⋅⋅π stacking, between the organocatalyst coordinated electrophile and nucleophile. This is seen for a wide range of experimentally reported systems. That such complex formation leads to enhanced stereoselectivity is then demonstrated for two cases: the cinchona alkaloid complex (BzCPD), catalysing thiocyanation (2-naphthol additive employed), as well as for L-pipecolicacid catalysing the asymmetric nitroaldol reaction with a range of nitro-substituted phenol additives. These findings, indicating that dual catalysis takes place when phenolic additives are employed, are likely to have a significant impact on the field of asymmetric organocatalysis.
Collapse
Affiliation(s)
- Subhrashis Banerjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Vigier J, Gao M, Jubault P, Lebel H, Besset T. Divergent process for the catalytic decarboxylative thiocyanation and isothiocyanation of carboxylic acids promoted by visible light. Chem Commun (Camb) 2023; 60:196-199. [PMID: 38047933 DOI: 10.1039/d3cc04624a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A divergent photoinduced selective synthesis of thiocyanate and isothiocyanate derivatives from readily available carboxylic acids was developed using N-thiocyanatosaccharin and a catalytic amount of base or acid. This molecular editing strategy allowed the functionalization of bioactive compounds. A mechanism for the transformation was proposed based on control experiments.
Collapse
Affiliation(s)
- Jordan Vigier
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Mélissa Gao
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Philippe Jubault
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Hélène Lebel
- Department of Chemistry and Center in Green Chemistry and Catalysis (CGCC), Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, QC, H3C 3J7, Canada.
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| |
Collapse
|
9
|
Chen H, Shi X, Liu X, Zhao L. Recent progress of direct thiocyanation reactions. Org Biomol Chem 2022; 20:6508-6527. [PMID: 35942781 DOI: 10.1039/d2ob01018f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiocyanates are common in natural products, synthetic drugs and bioactive molecules. Many thiocyanate derivatives show excellent antibacterial, antiparasitic and anticancer activities. Thiocyanation can introduce SCN groups into parent molecules for constructing SCN-containing small organic molecules. Among them, the direct introduction method mainly includes nucleophilic reaction, electrophilic reaction and free radical reaction, which can simply and quickly introduce SCN groups at the target sites to construct thiocyanates, and has broad application prospects. In this review, we summarize the research progress of direct thiocyanation in recent years.
Collapse
Affiliation(s)
- Haixin Chen
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiaotian Shi
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Limin Zhao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
10
|
Duan Y, Liang K, Yin H, Chen FX. Dithiocyanation of Alkynes with N‐Thiocyanato‐dibenzenesulfonimide and Ammonium Thiocyanate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongjie Duan
- Beijing Institute of Technology School of Chemistry and Chemical Engineering No.8 liangxiang East Road, Fangshan District 102488 beijing CHINA
| | - Kun Liang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hongquan Yin
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Fu-Xue Chen
- Beijing Institute of Technology School of chemical Engineering No5 south zhongguancun street, Haidian 100081 Beijing CHINA
| |
Collapse
|
11
|
Ye AH, Li ZH, Ding TM, Ke H, Chen ZM. Phosphoric Acid Catalyzed Electrophilic Thiocyanation of Indoles: Access to SCN-Containing Aryl-Indole Compounds. Chem Asian J 2022; 17:e202200256. [PMID: 35384332 DOI: 10.1002/asia.202200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Indexed: 11/06/2022]
Abstract
A phosphoric acid catalyzed electrophilic thiocyanation of 3-aryl indoles, which provides an efficient and modular approach to SCN-containing 3-aryl indole compounds, was developed for the first time. A variety of 2-SCN-3-aryl indoles were obtained with moderate to excellent yields. Furthermore, catalytic asymmetric manner of this reaction was also studied. Using chiral phosphoric acid as the catalyst, axially chiral SCN-containing 3-aryl indoles were obtained in moderate to good yields with moderate enantioselectivity.
Collapse
Affiliation(s)
- Ai-Hui Ye
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Zi-Hao Li
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Tong-Mei Ding
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Hua Ke
- Pingxiang University, Engineering Technology Research Center for Environmental Protection Materials, CHINA
| | - Zhi-Min Chen
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan RD. Minhang District, 200240, Shanghai, CHINA
| |
Collapse
|
12
|
Shao C, He Y, Yin H, Chen FX. Me3SiCl‐Catalyzed Electrophilic Thiocyanation/Cyclization of Alkynylbenzoates to Synthesize 4‐Thiocyanatoisocourmarins. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chukai Shao
- Beijing Institute of Technology School of Chemistry No. 8 Liangxiang East Road, Fangshan District, Beijing 102488 (P. R. China) 102488 Beijing CHINA
| | - Ying He
- Beijing Institute of Technology School of Chemistry CHINA
| | - Hongquan Yin
- Beijing Institute of Technology School of Chemistry CHINA
| | - Fu-Xue Chen
- Beijing Institute of Technology School of chemical Engineering No5 south zhongguancun street, Haidian 100081 Beijing CHINA
| |
Collapse
|
13
|
Karmaker PG, Alam MA, Huo F. Recent advances in photochemical and electrochemically induced thiocyanation: a greener approach for SCN-containing compound formation. RSC Adv 2022; 12:6214-6233. [PMID: 35424569 PMCID: PMC8981651 DOI: 10.1039/d1ra09060g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Techniques utilizing photo- and electrochemically induced reactions have been developed to accelerate organic processes. These techniques use light or electrical energy (electron transfer) as a direct energy source without using an initiator or reagent. Thiocyanates are found in biologically active and pharmacological compounds and can be converted into various functional groups. It is one of the most prominent organic scaffolds. Significant development in photo- and electro-chemically induced thiocyanation procedures has been made in recent years for the conception of carbon-sulfur bonds and synthesis of pharmaceutically important molecules. This review discusses different photo- and electro-chemically driven thiocyanation C(sp3)-SCN, C(sp2)-SCN, and C(sp)-SCN bond conception processes that may be useful to green organothiocyanate synthesis. We focus on the synthetic and mechanistic characteristics of organic photo- and electrochemically accelerated C-SCN bond formation thiocyanation reactions to highlight major advances in this novel green and sustainable research field.
Collapse
Affiliation(s)
- Pran Gopal Karmaker
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University Neijiang 641100 P. R. China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 Henan China
| | - Feng Huo
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University Neijiang 641100 P. R. China
| |
Collapse
|
14
|
Gao M, Vuagnat M, Jubault P, Besset T. N
‐Thiocyanato‐2,10‐camphorsultam Derivatives: Design and Applications of Original Electrophilic Thiocyanating Reagents. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mélissa Gao
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Martin Vuagnat
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Philippe Jubault
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Tatiana Besset
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|
15
|
Khan J, Tyagi A, Yadav N, Mahato R, Hazra CK. Lambert Salt-Initiated Development of Friedel-Crafts Reaction on Isatin to Access Distinct Derivatives of Oxindoles. J Org Chem 2021; 86:17833-17847. [PMID: 34874162 DOI: 10.1021/acs.joc.1c02058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Herein, a mild metal-free and efficacious route for the synthesis of biologically important 3-aryl oxindole derivatives is described. Using Lambert salt-initiated hydroarylation of isatin, a diverse array of monoarylated products, symmetrical/unsymmetrical double-arylated products, and deoxygenated hydroarylated products could be synthesized from the single starting substrate in good to excellent yields. A preliminary mechanistic study revealed that the reaction proceeds via a monoarylated product followed by a nucleophilic attack by another electron-rich arene nucleophile under mild conditions. The potential of newly synthesized symmetric/unsymmetric 3,3-disubstituted oxindole, 3-substituted 3-hydroxy oxindoles, 3,3-di(indolyl)indolin-2-ones, and α-aryl oxindoles as valuable building blocks is further illustrated.
Collapse
Affiliation(s)
- Jabir Khan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aparna Tyagi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rina Mahato
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy K Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
16
|
Fu Z, Gao Y, Yin H, Chen FX. Electrophilic Thiocyanato Reagent Assisted Oxa-Michael/Thiocyanation of α,β-Unsaturated Ketones. J Org Chem 2021; 86:17418-17427. [PMID: 34783557 DOI: 10.1021/acs.joc.1c01993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A route for thiocyanation-functionalization of the electron-deficient C═C double bond was developed. Regioselective thiocyanation-etherification of α,β-unsaturated ketones was achieved. The desired products were obtained in moderate to high yields under mild conditions. It was suggested that the nucleophile was activated by the electrophilic thiocyanato reagent, and difunctionalization was achieved through a 1,4-addition/thiocyanation pathway.
Collapse
Affiliation(s)
- Zhenda Fu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Yong Gao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| |
Collapse
|
17
|
Li JC, Gao WX, Liu MC, Zhou YB, Wu HY. α-Selective C(sp 3)-H Thio/Selenocyanation of Ketones with Elemental Chalcogen. J Org Chem 2021; 86:17294-17306. [PMID: 34784197 DOI: 10.1021/acs.joc.1c02431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile method is disclosed for the synthesis of α-thio/selenocyanato ketones through regioselective C-H thio/selenocyanation of ketones. The advantages include the use of easily available starting materials, high efficiency, simple operation, and easy scale-up. Control experiments provide evidence that the reaction proceeded via a radical way, while kinetic isotope effect experiments reveal that the cleavage of the C-H bond serves as the rate-limiting step.
Collapse
Affiliation(s)
- Jin-Cheng Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Wen-Xia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
18
|
Gao Y, Fu Z, Wu D, Yin H, Chen F. Organocatalyzed Asymmetric Tandem Intramolecular oxa‐Michael Addition/Electrophilic Thiocyanation: Synthesis of Chiral
α‐
Thiocyanato Flavanones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yong Gao
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Zhenda Fu
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Di Wu
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Fu‐Xue Chen
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| |
Collapse
|
19
|
Xiao J, Ai Z, Li X, Tao S, Zhao B, Wang X, Wang X, Du Y. Synthesis of 3-thiocyanated chromones via TCCA/NH4SCN-mediated cyclization/thiocyanation of alkynyl aryl ketones. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
20
|
Qin X, Jiang G, Gao J, Zhang H, Sun D, Zhang G, Zheng L, Zhang S. Imidodiphosphoric Acids Catalysed Asymmetric Functionaliza‐tion with Thiols: Access to Oxindole Derived ɑ‐Chiral Thioethers. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiangshuo Qin
- College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Guofeng Jiang
- College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Jigang Gao
- College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Heng Zhang
- College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Dongyang Sun
- College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Guangliang Zhang
- College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Liangyu Zheng
- College of Life Sciences Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education Jilin University 2699 Qianjin Street Changchun 130012 Peoples Republic of China
| | - Suoqin Zhang
- College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 People's Republic of China
- College of Life Sciences Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education Jilin University 2699 Qianjin Street Changchun 130012 Peoples Republic of China
| |
Collapse
|
21
|
Wu D, Duan Y, Liang K, Yin H, Chen FX. AIBN-initiated direct thiocyanation of benzylic sp 3 C-H with N-thiocyanatosaccharin. Chem Commun (Camb) 2021; 57:9938-9941. [PMID: 34498624 DOI: 10.1039/d1cc04302a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Direct thiocyanations of benzylic compounds have been implemented. Here, a new strategy, involving a free radical reaction pathway initiated by AIBN, was used to construct the benzylic sp3 C-SCN bond. In this way, the disadvantage of other strategies involving introducing leaving groups in advance to synthesize benzyl thiocyanate compounds was overcome. The currently developed protocol also involved the use of readily available raw materials and resulted in high product yields (up to 100%), both being great advantages for synthesizing benzyl thiocyanates.
Collapse
Affiliation(s)
- Di Wu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| | - Yongjie Duan
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| | - Kun Liang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| |
Collapse
|
22
|
Li C, Long P, Fu Z, Wu D, Chen F, Yin H. Thiocyanation/Cyclization of γ‐hydroxy Olefins to Access Thiocyanato‐Containing Oxygen Heterocyclic Compounds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chengcheng Li
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Pingliang Long
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Zhenda Fu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Di Wu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Fu‐Xue Chen
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Hongquan Yin
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| |
Collapse
|
23
|
Gao M, Vuagnat M, Chen MY, Pannecoucke X, Jubault P, Besset T. Design and Use of Electrophilic Thiocyanating and Selenocyanating Reagents: An Interesting Trend for the Construction of SCN- and SeCN-Containing Compounds. Chemistry 2021; 27:6145-6160. [PMID: 33283371 DOI: 10.1002/chem.202004974] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 01/01/2023]
Abstract
Organothiocyanate and organoselenocyanate compounds are of paramount importance in organic chemistry as they are key intermediates to access sulfur- and selenium-containing compounds. Therefore, among the different synthetic pathways to get SCN- and SeCN-containing molecules, original methodologies using electrophilic reagents have recently been explored. This Minireview will showcase the recent advances that have been made. In particular, the design of several electrophilic sources and their applications for the thiocyanation and the selenocyanation of various classes of compounds will be highlighted and discussed.
Collapse
Affiliation(s)
- Mélissa Gao
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Martin Vuagnat
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Mu-Yi Chen
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Xavier Pannecoucke
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Philippe Jubault
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
24
|
Wu H, Shao C, Wu D, Jiang L, Yin H, Chen FX. Atom-Economical Thiocyanation-Amination of Alkynes with N-Thiocyanato-Dibenzenesulfonimide. J Org Chem 2021; 86:5327-5335. [PMID: 33703903 DOI: 10.1021/acs.joc.0c02780] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regioselective protocol for intermolecular thiocyanation-amination of alkynes by N-thiocyano-dibenzenesulfonimide (NTSI) as the SCN and nitrogen sources has been developed. A C-S bond and C-N bond are simultaneously constructed in only one step. The reaction under simple mild conditions features a broad substrate scope, atom economy, high yields (up to 94%), and excellent functional group tolerance.
Collapse
Affiliation(s)
- Haopeng Wu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Chukai Shao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Di Wu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Liang Jiang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, No. 94 Wei Jin Road, Nankai District, Tianjin, 300071, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| |
Collapse
|
25
|
Feng Y, Zhao S, Du G, Zhang S, Zhang D, Liu H, Li X, Dong Y, Sun FG. Intermolecular alkene arylcyanation using BnSCN as a cyanide source via a reductive strategy: access to 3,3-disubstituted oxindoles. Org Chem Front 2021. [DOI: 10.1039/d0qo01462a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a nickel-catalyzed two-component reductive arylcyanation of aryl (pseudo)halide tethered alkenes using benzyl thiocyanate as a cyanide source via C–S bond activation is developed.
Collapse
Affiliation(s)
- Yunxia Feng
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Shen Zhao
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Guopeng Du
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Shuang Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Feng-Gang Sun
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| |
Collapse
|
26
|
Wu D, Li C, Duan Y, Yin H, Chen FX. One-pot synthesis of 2-chloro-2-thio/selenocyanato ketones from β-keto acids. Org Chem Front 2021. [DOI: 10.1039/d1qo00405k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chlorothiocyanato difunctionalization reaction has been achieved, and a variety of α-chlorothio/selenocyanato difunctional ketones are synthesized through one-pot strategy from β-keto acids.
Collapse
Affiliation(s)
- Di Wu
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| | - Chengcheng Li
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| | - Yongjie Duan
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| |
Collapse
|
27
|
Sanz-Villafruela J, Martínez-Alonso C, Echevarría I, Vaquero M, Carbayo A, Fidalgo J, Rodríguez AM, Cuevas-Vicario JV, Lima JC, Moro AJ, Manzano BR, Jalón FA, Espino G. One-pot photocatalytic transformation of indolines into 3-thiocyanate indoles with new Ir( iii) photosensitizers bearing β-carbolines. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01307b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we harness the combination of two photocatalytic reactions, promoted by new Ir(iii) photosensitizers, for the direct access to 3-thiocyanato indoles from indolines in a one-pot process.
Collapse
|
28
|
Rokade BV, Guiry PJ. Synthesis of α-Aryl Oxindoles by Friedel-Crafts Alkylation of Arenes. J Org Chem 2020; 85:6172-6180. [PMID: 32259447 DOI: 10.1021/acs.joc.0c00370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Aryl oxindoles are accessed from isatin via a two-step procedure involving a phospha-Brook rearrangement and a Friedel-Crafts alkylation in a one-pot procedure. The use of 1,1,1,3,3,3-hexafluoro-2-propanol as solvent significantly extended the reaction substrate scope to include relatively less electron-rich arenes including benzene. This new alkylation method is fast and straightforward and allows for the direct introduction of the oxindole moiety onto a range of aromatic compounds including phenols. Additionally, the application of arylated products was shown in decarboxylative asymmetric allylation and protonation.
Collapse
Affiliation(s)
- Balaji V Rokade
- Centre for Synthesis and Chemical Biology (CSCB), Synthesis and Solid State Pharmaceutical Centre (SSPC), School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology (CSCB), Synthesis and Solid State Pharmaceutical Centre (SSPC), School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| |
Collapse
|
29
|
Qumruddeen, Yadav A, Kant R, Tripathi CB. Lewis Base/Brønsted Acid Cocatalysis for Thiocyanation of Amides and Thioamides. J Org Chem 2020; 85:2814-2822. [PMID: 31922410 DOI: 10.1021/acs.joc.9b03275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lewis base/Brønsted acid cocatalysis for electrophilic thiocyanation of olefins is reported. Using a combination of triphenylphosphine selenide and diphenyl phosphate as a catalyst, a wide range of unsaturated amides and thioamides underwent thiocyanation to furnish thiocyanated thiazoline and oxazoline derivatives in high yields (up to 97%).
Collapse
Affiliation(s)
- Qumruddeen
- Academy of Scientific and Innovative Research , New Delhi 110001 , India
| | - Arun Yadav
- Academy of Scientific and Innovative Research , New Delhi 110001 , India
| | | | | |
Collapse
|
30
|
Wu D, Qiu J, Li C, Yuan L, Yin H, Chen FX. Lewis Acid-Catalyzed Asymmetric Selenocyanation of β-Ketoesters with N-Selenocyanatosaccharin. J Org Chem 2019; 85:934-941. [PMID: 31820979 DOI: 10.1021/acs.joc.9b02786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first electrophilic asymmetric selenocyanation has been achieved in the presence of Ni(OTf)2 and (R,R)-DBFOX/Ph using N-selenocyanatosaccharin as the new selenocyanation reagent. Thus, a series of α-selenocyanato-β-keto esters were synthesized with high yields (up to 99%) and good ee values (up to 92% ee). The readily preparation of the reagent and high enantioselectivity make this methodology much practical for the synthesis of chiral selenocyanates.
Collapse
Affiliation(s)
- Di Wu
- School of Chemistry & Chemical Engineering , Beijing Institute of Technology (Liangxiang Campus) , No. 8 Liangxiang East Road Fangshan District , Beijing 102488 , China
| | - Jiashen Qiu
- School of Chemistry & Chemical Engineering , Beijing Institute of Technology (Liangxiang Campus) , No. 8 Liangxiang East Road Fangshan District , Beijing 102488 , China
| | - Chengqiu Li
- School of Chemistry & Chemical Engineering , Beijing Institute of Technology (Liangxiang Campus) , No. 8 Liangxiang East Road Fangshan District , Beijing 102488 , China
| | - Lexia Yuan
- School of Chemistry & Chemical Engineering , Beijing Institute of Technology (Liangxiang Campus) , No. 8 Liangxiang East Road Fangshan District , Beijing 102488 , China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering , Beijing Institute of Technology (Liangxiang Campus) , No. 8 Liangxiang East Road Fangshan District , Beijing 102488 , China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering , Beijing Institute of Technology (Liangxiang Campus) , No. 8 Liangxiang East Road Fangshan District , Beijing 102488 , China
| |
Collapse
|
31
|
Song XF, Ye AH, Xie YY, Dong JW, Chen C, Zhang Y, Chen ZM. Lewis-Acid-Mediated Thiocyano Semipinacol Rearrangement of Allylic Alcohols for Construction of α-Quaternary Center β-Thiocyano Carbonyls. Org Lett 2019; 21:9550-9554. [PMID: 31742419 DOI: 10.1021/acs.orglett.9b03722] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An electrophilic thiocyano semipinacol rearrangement of allylic alcohols has been achieved for the first time by using N-thiocyano-dibenzenesulfonimide (NTSI). This approach provides a direct, simple, and efficient strategy for the formation of thiocyano carbonyl compounds with moderate to excellent yields. Meanwhile, an all-carbon quaternary center was rapidly constructed. In addition, an asymmetric version of this tandem reaction was preliminarily investigated.
Collapse
Affiliation(s)
- Xu-Feng Song
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Ai-Hui Ye
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Yu-Yang Xie
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Jia-Wei Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Chao Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| |
Collapse
|
32
|
Li C, Long P, Wu H, Yin H, Chen FX. N-Thiocyanato-dibenzenesulfonimide: a new electrophilic thiocyanating reagent with enhanced reactivity. Org Biomol Chem 2019; 17:7131-7134. [DOI: 10.1039/c9ob01340g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N-Thiocyanato-dibenzenesulfonimide: a new electrophilic thiocyanating reagent was readily prepared and exhibited enhanced reactivity with a wide scope of substrates.
Collapse
Affiliation(s)
- Chengqiu Li
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| | - Pingliang Long
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| | - Haopeng Wu
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| |
Collapse
|