1
|
Ryan P, Iftikhar R, Hunter L. Origami with small molecules: exploiting the C-F bond as a conformational tool. Beilstein J Org Chem 2025; 21:680-716. [PMID: 40196389 PMCID: PMC11973591 DOI: 10.3762/bjoc.21.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
When present within an organic molecule, the C-F bond tends to align in predictable ways with neighbouring functional groups, due to stereoelectronic effects such as hyperconjugation and electrostatic attraction/repulsion. These fluorine-derived conformational effects have been exploited to control the shapes, and thereby enhance the properties, of a wide variety of functional molecules including pharmaceutical agents, liquid crystals, fragrance chemicals, organocatalysts, and peptides. This comprehensive review summarises developments in this field during the period 2010-2024.
Collapse
Affiliation(s)
- Patrick Ryan
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| | - Ramsha Iftikhar
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
2
|
Van De Velde J, Calderón Rodríguez A, Wang Z, Wheatley DE, Linclau B. In pursuit of larger lipophilicity enhancement: an investigation of sugar deoxychlorination. Org Biomol Chem 2025; 23:2586-2589. [PMID: 39930814 PMCID: PMC11811696 DOI: 10.1039/d5ob00037h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
The excessive hydrophilicity of carbohydrates hampers their application in drug discovery. Deoxyfluorination is one of the strategies to increase sugar lipophilicity. However, lipophilicities of dideoxy-difluorinated monosaccharides are still well below the desired range for oral drug candidates. Here we investigate the power of deoxychlorination to increase sugar lipophilicities. A series of dideoxygenated chloro-fluorosugars was synthesized and for these substrates it was shown that deoxychlorination increased the log P by an average of 1.37 log P units, compared to 0.83 log P units for analogous deoxyfluorination. This shows the potential of deoxychlorination of carbohydrates to increase lipophilicity while limiting the number of potentially important hydrogen bond donating groups to be sacrificed, and will be of interest for glycomimetic development.
Collapse
Affiliation(s)
- Jonas Van De Velde
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium.
| | | | - Zhong Wang
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - David E Wheatley
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Bruno Linclau
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium.
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
3
|
Lessard O, Grosset-Magagne M, Johnson PA, Giguère D. Synthesis and conformational analysis of pyran inter-halide analogues of ᴅ-talose. Beilstein J Org Chem 2024; 20:2442-2454. [PMID: 39355854 PMCID: PMC11443651 DOI: 10.3762/bjoc.20.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024] Open
Abstract
In this work, we describe the synthesis of halogenated pyran analogues of ᴅ-talose using a halo-divergent strategy from known 1,6-anhydro-2,3-dideoxy-2,3-difluoro-β-ᴅ-mannopyranose. In solution and in the solid-state, all analogues adopt standard 4 C 1-like conformations despite 1,3-diaxial repulsion between the F2 and the C4 halogen. Moreover, the solid-state conformational analysis of halogenated pyrans reveals deviation in the intra-annular torsion angles arising from repulsion between the axial fluorine at C2 and the axial halogen at C4, which increases with the size of the halogen at C4 (F < Cl < Br < I). Crystal packing arrangements of pyran inter-halides show hydrogen bond acceptor and nonbonding interactions for the halogen at C4. Finally, density functional theory (DFT) calculations corroborate the preference of talose analogues to adopt a 4 C 1-like conformation and a natural bonding orbital (NBO) analysis demonstrates the effects of hyperconjugation from C-F antibonding orbitals.
Collapse
Affiliation(s)
- Olivier Lessard
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, PROTEO, Canada
| | - Mathilde Grosset-Magagne
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, PROTEO, Canada
| | - Paul A Johnson
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, PROTEO, Canada
| | - Denis Giguère
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, PROTEO, Canada
| |
Collapse
|
4
|
Poškaitė G, Wheatley DE, Wells N, Linclau B, Sinnaeve D. Obtaining Pure 1H NMR Spectra of Individual Pyranose and Furanose Anomers of Reducing Deoxyfluorinated Sugars. J Org Chem 2023; 88:13908-13925. [PMID: 37754916 PMCID: PMC10563139 DOI: 10.1021/acs.joc.3c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 09/28/2023]
Abstract
Due to tautomeric equilibria, NMR spectra of reducing sugars can be complex with many overlapping resonances. This hampers coupling constant determination, which is required for conformational analysis and configurational assignment of substituents. Given that mixtures of interconverting species are physically inseparable, easy-to-use techniques that enable facile full 1H NMR characterization of sugars are of interest. Here, we show that individual spectra of both pyranoside and furanoside forms of reducing fluorosugars can be obtained using 1D FESTA. We discuss the unique opportunities offered by FESTA over standard sel-TOCSY and show how it allows a more complete characterization. We illustrate the power of FESTA by presenting the first full NMR characterization of many fluorosugars, including of the important fluorosugar 2-deoxy-2-fluoroglucose. We discuss in detail all practical considerations for setting up FESTA experiments for fluorosugars, which can be extended to any mixture of fluorine-containing species interconverting slowly on the NMR frequency-time scale.
Collapse
Affiliation(s)
- Gabija Poškaitė
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - David E. Wheatley
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Neil Wells
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus
Sterre, Krijgslaan 281-S4, Ghent 9000, Belgium
| | - Davy Sinnaeve
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France
| |
Collapse
|
5
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
6
|
Greis K, Kirschbaum C, Fittolani G, Mucha E, Chang R, von Helden G, Meijer G, Delbianco M, Seeberger PH, Pagel K. Neighboring Group Participation of Benzoyl Protecting Groups in C3- and C6-Fluorinated Glucose. European J Org Chem 2022; 2022:e202200255. [PMID: 35915640 PMCID: PMC9321577 DOI: 10.1002/ejoc.202200255] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Fluorination is a potent method to modulate chemical properties of glycans. Here, we study how C3- and C6-fluorination of glucosyl building blocks influence the structure of the intermediate of the glycosylation reaction, the glycosyl cation. Using a combination of gas-phase infrared spectroscopy and first-principles theory, glycosyl cations generated from fluorinated and non-fluorinated monosaccharides are structurally characterized. The results indicate that neighboring group participation of the C2-benzoyl protecting group is the dominant structural motif for all building blocks, correlating with the β-selectivity observed in glycosylation reactions. The infrared signatures indicate that participation of the benzoyl group in enhanced by resonance effects. Participation of remote acyl groups such as Fmoc or benzyl on the other hand is unfavored. The introduction of the less bulky fluorine leads to a change in the conformation of the ring pucker, whereas the structure of the active dioxolenium site remains unchanged.
Collapse
Affiliation(s)
- Kim Greis
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Carla Kirschbaum
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Giulio Fittolani
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Eike Mucha
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Rayoon Chang
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Gert von Helden
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Gerard Meijer
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Martina Delbianco
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Peter H. Seeberger
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Kevin Pagel
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| |
Collapse
|
7
|
Ziemniak M, Pawlędzio S, Zawadzka-Kaźmierczuk A, Dominiak PM, Trzybiński D, Koźmiński W, Zieliński R, Fokt I, Priebe W, Woźniak K, Pająk B. X-ray wavefunction refinement and comprehensive structural studies on bromo-substituted analogues of 2-deoxy-d-glucose in solid state and solution. RSC Adv 2022; 12:8345-8360. [PMID: 35424802 PMCID: PMC8985090 DOI: 10.1039/d1ra08312k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/01/2022] [Accepted: 03/05/2022] [Indexed: 11/21/2022] Open
Abstract
The structural studies on two bromo-substituted derivatives of 2-deoxy-d-glucose (2-DG), namely 2-deoxy-2-bromo-d-glucose (2-BG) and 2-deoxy-2-bromo-d-mannose (2-BM) are described. 2-DG itself is an inhibitor of hexokinase, the first enzyme in the glycolysis process, playing a vital role in both cancer cell metabolism and viral replication in host cells. Because of that, 2-DG derivatives are considered as potential anti-cancer and anti-viral drugs. An X-ray quantum crystallography approach allowed us to obtain more accurate positions of hydrogen atoms by applying Hirshfeld atom refinement, providing a better description of hydrogen bonding even in the case of data from routine X-ray experiments. Obtained structures showed that the introduction of bromine at the C2 position in the pyranose ring has a minor influence on its conformation but still, it has a noticeable effect on the crystal structure. Bromine imposes the formation of a layered supramolecular landscape containing hydrogen bonds, which involves the bromine atom. Periodic DFT calculations of cohesive and interaction energies (at the B3LYP level of theory) have supported these findings and highlighted energetic changes upon bromine substitution. Based on molecular wavefunction from the refinement, we calculated the electrostatic potential, Laplacian, and ELI-D, and applied them to charge-density studies, which confirmed the geometry of hydrogen bonding and involvement of the bromine atom with these intermolecular interactions. NMR studies in the solution show that both compounds do not display significant differences in their anomeric equilibria compared to 2-DG, and the pyranose ring puckering is similar in both aqueous and solid state.
Collapse
Affiliation(s)
- Marcin Ziemniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Sylwia Pawlędzio
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Anna Zawadzka-Kaźmierczuk
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Paulina M Dominiak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Damian Trzybiński
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Wiktor Koźmiński
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Rafał Zieliński
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center 1901 East Rd. Houston TX 77054 USA
| | - Izabela Fokt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center 1901 East Rd. Houston TX 77054 USA
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center 1901 East Rd. Houston TX 77054 USA
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warszawa Poland
| | - Beata Pająk
- Independent Laboratory of Genetics and Molecular Biology, Kaczkowski Military Institute of Hygiene and Epidemiology Kozielska 4 01-163 Warsaw Poland
| |
Collapse
|
8
|
Lessard O, Lainé D, Fecteau CÉ, Johnson PA, Giguère D. Fundamental curiosity of multivicinal inter-halide stereocenters. Org Chem Front 2022. [DOI: 10.1039/d2qo01433e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A stereoselective strategy allowed the striking impact of a single halogen on the physical properties of inter-halide alkane units to be unravelled.
Collapse
Affiliation(s)
- Olivier Lessard
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| | - Danny Lainé
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| | - Charles-Émile Fecteau
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| | - Paul A. Johnson
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| | - Denis Giguère
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| |
Collapse
|
9
|
St-Gelais J, Leclerc C, Giguère D. Synthesis of fluorinated thiodigalactoside analogues. Carbohydr Res 2021; 511:108481. [PMID: 34837848 DOI: 10.1016/j.carres.2021.108481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022]
Abstract
In this work, we report the first synthesis of fluorinated thiodigalactoside analogues. We used tri-isopropylsilyl thioglycosides as masked glycosyl thiol nucleophiles for the elaboration of two monofluorinated heterodimers, one difluorinated homodimer, and one difluorinated heterodimer. Moreover, we also present an alternative synthesis of 3-deoxy-3-fluorogalactose and 4-deoxy-4-fluorogalactose from a common precursor. Finally, this small set of more stable thiodigalactoside analogues could be interesting inhibitors of galactose-specific lectins.
Collapse
Affiliation(s)
- Jacob St-Gelais
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, Canada
| | - Christina Leclerc
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, Canada
| | - Denis Giguère
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, Canada.
| |
Collapse
|
10
|
Kurfiřt M, Dračínský M, Červenková Šťastná L, Cuřínová P, Hamala V, Hovorková M, Bojarová P, Karban J. Selectively Deoxyfluorinated N-Acetyllactosamine Analogues as 19 F NMR Probes to Study Carbohydrate-Galectin Interactions. Chemistry 2021; 27:13040-13051. [PMID: 34216419 DOI: 10.1002/chem.202101752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 01/12/2023]
Abstract
Galectins are widely expressed galactose-binding lectins implied, for example, in immune regulation, metastatic spreading, and pathogen recognition. N-Acetyllactosamine (Galβ1-4GlcNAc, LacNAc) and its oligomeric or glycosylated forms are natural ligands of galectins. To probe substrate specificity and binding mode of galectins, we synthesized a complete series of six mono-deoxyfluorinated analogues of LacNAc, in which each hydroxyl has been selectively replaced by fluorine while the anomeric position has been protected as methyl β-glycoside. Initial evaluation of their binding to human galectin-1 and -3 by ELISA and 19 F NMR T2 -filter revealed that deoxyfluorination at C3, C4' and C6' completely abolished binding to galectin-1 but very weak binding to galectin-3 was still detectable. Moreover, deoxyfluorination of C2' caused an approximately 8-fold increase in the binding affinity towards galectin-1, whereas binding to galectin-3 was essentially not affected. Lipophilicity measurement revealed that deoxyfluorination at the Gal moiety affects log P very differently compared to deoxyfluorination at the GlcNAc moiety.
Collapse
Affiliation(s)
- Martin Kurfiřt
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic.,University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Lucie Červenková Šťastná
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic
| | - Petra Cuřínová
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic
| | - Vojtěch Hamala
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic.,University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic
| | - Michaela Hovorková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jindřich Karban
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic
| |
Collapse
|
11
|
Hazelard D, Compain P. Nucleophilic Ring‐Opening of 1,6‐Anhydrosugars: Recent Advances and Applications in Organic Synthesis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Univ. de Strasbourg Univ. de Haute-Alsace CNRS (UMR 7042) Equipe de Synthèse Organique et Molécules Bioactives (SYBIO) ECPM 25 Rue Becquerel 67000 Strasbourg France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Univ. de Strasbourg Univ. de Haute-Alsace CNRS (UMR 7042) Equipe de Synthèse Organique et Molécules Bioactives (SYBIO) ECPM 25 Rue Becquerel 67000 Strasbourg France
| |
Collapse
|
12
|
Vulpetti A, Dalvit C. Hydrogen Bond Acceptor Propensity of Different Fluorine Atom Types: An Analysis of Experimentally and Computationally Derived Parameters. Chemistry 2021; 27:8764-8773. [PMID: 33949737 DOI: 10.1002/chem.202100301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/29/2022]
Abstract
The propensity of organic fluorine acting as a weak hydrogen bond acceptor (HBA) in intermolecular and intramolecular interactions has been the subject of many experimental and theoretical studies often reaching different conclusions. Over the last few years, new and stronger evidences have emerged for the direct involvement of fluorine in weak hydrogen bond (HB) formation. However, not all the fluorine atom types can act as weak HBA. In this work, the differential HBA propensity of various types of fluorine atoms was analyzed with a particular emphasis for the different types of alkyl fluorides. This was carried out by evaluating ab initio computed parameters, experimental 19 F NMR chemical shifts and small molecule crystallographic structures (extracted from the CSD database). According to this analysis, shielded (with reference to the 19 F NMR chemical shift) alkyl mono-fluorinated motifs display the highest HBA propensity in agreement with solution studies. Although much weaker than other well-characterized HB complexes, the fragile HBs formed by these fluorinated motifs have important implications for the chemical-physical and structural properties of the molecules, chemical reactions, and protein-ligand recognition.
Collapse
Affiliation(s)
- Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002, Basel, Switzerland
| | | |
Collapse
|
13
|
Wheatley DE, Fontenelle CQ, Kuppala R, Szpera R, Briggs EL, Vendeville JB, Wells NJ, Light ME, Linclau B. Synthesis and Structural Characteristics of all Mono- and Difluorinated 4,6-Dideoxy-d- xylo-hexopyranoses. J Org Chem 2021; 86:7725-7756. [PMID: 34029099 DOI: 10.1021/acs.joc.1c00796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-carbohydrate interactions are implicated in many biochemical/biological processes that are fundamental to life and to human health. Fluorinated carbohydrate analogues play an important role in the study of these interactions and find application as probes in chemical biology and as drugs/diagnostics in medicine. The availability and/or efficient synthesis of a wide variety of fluorinated carbohydrates is thus of great interest. Here, we report a detailed study on the synthesis of monosaccharides in which the hydroxy groups at their 4- and 6-positions are replaced by all possible mono- and difluorinated motifs. Minimization of protecting group use was a key aim. It was found that introducing electronegative substituents, either as protecting groups or as deoxygenation intermediates, was generally beneficial for increasing deoxyfluorination yields. A detailed structural study of this set of analogues demonstrated that dideoxygenation/fluorination at the 4,6-positions caused very little distortion both in the solid state and in aqueous solution. Unexpected trends in α/β anomeric ratios were identified. Increasing fluorine content always increased the α/β ratio, with very little difference between regio- or stereoisomers, except when 4,6-difluorinated.
Collapse
Affiliation(s)
- David E Wheatley
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Clement Q Fontenelle
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Ramakrishna Kuppala
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Robert Szpera
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Edward L Briggs
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | | | - Neil J Wells
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Mark E Light
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|
14
|
Hamala V, Červenková Šťastná L, Kurfiřt M, Cuřínová P, Dračínský M, Karban J. Synthesis of multiply fluorinated N-acetyl-D-glucosamine and D-galactosamine analogs via the corresponding deoxyfluorinated glucosazide and galactosazide phenyl thioglycosides. Beilstein J Org Chem 2021; 17:1086-1095. [PMID: 34093878 PMCID: PMC8144920 DOI: 10.3762/bjoc.17.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Multiple fluorination of glycostructures has emerged as an attractive way of modulating their protein affinity, metabolic stability, and lipophilicity. Here we described the synthesis of a series of mono-, di- and trifluorinated N-acetyl-ᴅ-glucosamine and ᴅ-galactosamine analogs. The key intermediates are the corresponding multiply fluorinated glucosazide and galactosazide thioglycosides prepared from deoxyfluorinated 1,6-anhydro-2-azido-β-ᴅ-hexopyranose precursors by ring-opening reaction with phenyl trimethylsilyl sulfide. Nucleophilic deoxyfluorination at C4 and C6 by reaction with DAST, thioglycoside hydrolysis and azide/acetamide transformation completed the synthesis.
Collapse
Affiliation(s)
- Vojtěch Hamala
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 16628 Praha 6, Czech Republic
| | - Lucie Červenková Šťastná
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
| | - Martin Kurfiřt
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 16628 Praha 6, Czech Republic
| | - Petra Cuřínová
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
| | - Martin Dračínský
- NMR Spectroscopy group, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 542/2, 16000 Praha, Czech Republic
| | - Jindřich Karban
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
| |
Collapse
|
15
|
Tremblay T, St-Gelais J, Houde M, Giguère D. Polyfluoroglycoside Synthesis via Simple Alkylation of an Anomeric Hydroxyl Group: Access to Fluoroetoposide Analogues. J Org Chem 2021; 86:4812-4824. [DOI: 10.1021/acs.joc.0c02841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Tremblay
- Département de Chimie, Université Laval, PROTEO, 1045 av. De la Médecine, Québec City, QC, Canada G1 V 0A6
| | - Jacob St-Gelais
- Département de Chimie, Université Laval, PROTEO, 1045 av. De la Médecine, Québec City, QC, Canada G1 V 0A6
| | - Maxime Houde
- Département de Chimie, Université Laval, PROTEO, 1045 av. De la Médecine, Québec City, QC, Canada G1 V 0A6
| | - Denis Giguère
- Département de Chimie, Université Laval, PROTEO, 1045 av. De la Médecine, Québec City, QC, Canada G1 V 0A6
| |
Collapse
|
16
|
Lainé D, Lessard O, St-Gelais J, Giguère D. From Carbohydrates to Complex Organofluorines: Synthesis, Conformation, and Lipophilicity of Multivicinal-Fluorine-Containing Hexitol Analogues. Chemistry 2021; 27:3799-3805. [PMID: 33290627 DOI: 10.1002/chem.202004646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/26/2020] [Indexed: 02/02/2023]
Abstract
There is growing interest in the preparation of fluorine-containing organic molecules. Multivicinal-fluorine analogues are among the most intriguing and promising compounds, but their physical and biological investigations are held back by challenging syntheses. Herein, we report on the synthesis of a large set of novel polyfluorohexitols. The dominant solution-state conformation of all trifluorohexitols was determined, and the solid-state conformations of some analogues were compared. Finally, the lipophilicity of a large set of polyfluorinated hexopyranose and hexitol analogues was attributed by using a log P determination method based on 19 F NMR spectroscopy.
Collapse
Affiliation(s)
- Danny Lainé
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Olivier Lessard
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Jacob St-Gelais
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Denis Giguère
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
17
|
Linclau B, Ardá A, Reichardt NC, Sollogoub M, Unione L, Vincent SP, Jiménez-Barbero J. Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chem Soc Rev 2021; 49:3863-3888. [PMID: 32520059 DOI: 10.1039/c9cs00099b] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides an extensive summary of the effects of carbohydrate fluorination with regard to changes in physical, chemical and biological properties with respect to regular saccharides. The specific structural, conformational, stability, reactivity and interaction features of fluorinated sugars are described, as well as their applications as probes and in chemical biology.
Collapse
Affiliation(s)
- Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO171BJ, UK
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain.
| | | | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-organic Chemistry, University of Namur (UNamur), B-5000 Namur, Belgium
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain. and Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain and Department of Organic Chemistry II, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
18
|
Hevey R. The Role of Fluorine in Glycomimetic Drug Design. Chemistry 2020; 27:2240-2253. [DOI: 10.1002/chem.202003135] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences University of Basel, Pharmazentrum Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
19
|
Lainé D, Denavit V, Lessard O, Carrier L, Fecteau CÉ, Johnson PA, Giguère D. Fluorine effect in nucleophilic fluorination at C4 of 1,6-anhydro-2,3-dideoxy-2,3-difluoro-β-D-hexopyranose. Beilstein J Org Chem 2020; 16:2880-2887. [PMID: 33299486 PMCID: PMC7705882 DOI: 10.3762/bjoc.16.237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/08/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, we have developed a simple synthetic approach using Et3N·3HF as an alternative to the DAST reagent. We controlled the stereochemistry of the nucleophilic fluorination at C4 of 1,6-anhydro-2,3-dideoxy-2,3-difluoro-4-O-triflate-β-ᴅ-talopyranose using Et3N·3HF or in situ generated Et3N·1HF. The influence of the fluorine atom at C2 on reactivity at C4 could contribute to a new fluorine effect in nucleophilic substitution. Finally, with the continuous objective of synthesizing novel multi-vicinal fluorosugars, we prepared one difluorinated and one trifluorinated alditol analogue.
Collapse
Affiliation(s)
- Danny Lainé
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Vincent Denavit
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Olivier Lessard
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Laurie Carrier
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Charles-Émile Fecteau
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Paul A Johnson
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Denis Giguère
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| |
Collapse
|
20
|
St-Gelais J, Côté É, Lainé D, Johnson PA, Giguère D. Addressing the Structural Complexity of Fluorinated Glucose Analogues: Insight into Lipophilicities and Solvation Effects. Chemistry 2020; 26:13499-13506. [PMID: 32652740 DOI: 10.1002/chem.202002825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 01/24/2023]
Abstract
In this work, we synthesized all mono-, di-, and trifluorinated glucopyranose analogues at positions C-2, C-3, C-4, and C-6. This systematic investigation allowed us to perform direct comparison of 19 F resonances of fluorinated glucose analogues and also to determine their lipophilicities. Compounds with a fluorine atom at C-6 are usually the most hydrophilic, whereas those with vicinal polyfluorinated motifs are the most lipophilic. Finally, the solvation energies of fluorinated glucose analogues were assessed for the first time by using density functional theory. This method allowed the log P prediction of fluoroglucose analogues, which was comparable to the C log P values obtained from various web-based programs.
Collapse
Affiliation(s)
- Jacob St-Gelais
- Département de Chimie, Université Laval, 1045 av. De la Médecine, Québec City, QC, G1V 0A6, Canada
| | - Émilie Côté
- Département de Chimie, Université Laval, 1045 av. De la Médecine, Québec City, QC, G1V 0A6, Canada
| | - Danny Lainé
- Département de Chimie, Université Laval, 1045 av. De la Médecine, Québec City, QC, G1V 0A6, Canada
| | - Paul A Johnson
- Département de Chimie, Université Laval, 1045 av. De la Médecine, Québec City, QC, G1V 0A6, Canada
| | - Denis Giguère
- Département de Chimie, Université Laval, 1045 av. De la Médecine, Québec City, QC, G1V 0A6, Canada
| |
Collapse
|
21
|
Danchin A. Isobiology: A Variational Principle for Exploring Synthetic Life. Chembiochem 2020; 21:1781-1792. [DOI: 10.1002/cbic.202000060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Antoine Danchin
- Stellate TherapeuticsInstitut Cochin 24 rue du Faubourg Saint-Jacques 75014 Paris France
| |
Collapse
|
22
|
Vaugenot J, El Harras A, Tasseau O, Marchal R, Legentil L, Le Guennic B, Benvegnu T, Ferrières V. 6-Deoxy-6-fluoro galactofuranosides: regioselective glycosylation, unexpected reactivity, and anti-leishmanial activity. Org Biomol Chem 2020; 18:1462-1475. [PMID: 32025679 DOI: 10.1039/c9ob02596k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selective glycosylation of the C-6 fluorinated galactofuranosyl acceptor 2 was studied with four galactofuranosyl donors. It was highlighted that this electron-withdrawing atom strongly impacted the behavior of the acceptor, thus leading to unprecedented glycosylation pathways. Competition between expected glycosylation of 2, ring expansion of this acceptor and furanosylation, and intermolecular aglycon transfer was observed. Further investigation of the fluorinated synthetic compounds showed that the presence of fluorine atom contributed to increase the inhibition of the growth of Leishmania tarentolae, a non-pathogenic strain of Leishmania.
Collapse
Affiliation(s)
- Jeane Vaugenot
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Abderrafek El Harras
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Olivier Tasseau
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Rémi Marchal
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Laurent Legentil
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Boris Le Guennic
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Thierry Benvegnu
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Vincent Ferrières
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| |
Collapse
|