1
|
Gupta A, Ranaut S, Kooleri A, Jandial T, Rani N, Bhuvanesh N, Mazumder S, Sridharan V. Revealing the Role of Solvent in anti-Oxypalladation-Triggered Regiocontrolled Domino Reactions for the Synthesis of Benzazepine- and Tetrahydroquinoline-Containing Scaffolds: A Combined Computational and Experimental Study. J Org Chem 2024; 89:13038-13058. [PMID: 39215714 DOI: 10.1021/acs.joc.4c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Palladium-catalyzed regiocontrolled intramolecular oxypalladation-initiated cascades of multifunctional internal alkyne bearing an N-tosyl tether deliver functionalized benzazepine as an exclusive product via 6-endo-dig pathway in 1,4-dioxane solvent and tetrahydroquinoline scaffold as a major product via the 5-exo-dig pathway in the DMSO solvent. The role of the solvent in controlling the regioselectivity is still unknown which can be a major hurdle for further reaction development. Moreover, the reaction in DMSO suffered from having a mixture of products, and no exclusive formation of tetrahydroquinoline was achieved. Herein, we report a concerted computational and experimental study, revealing the role of the solvent in controlling the reaction outcome. DFT study revealed that the formation of the σ-vinylpalladium intermediate is reversible for the 5-exo-dig pathway while it is irreversible for the 6-endo-dig mechanism in 1,4-dioxane and consequently, the 5-exo-dig pathway is difficult to proceed. In contrast, both the 5-exo-dig and 6-endo-dig pathways are irreversible in DMSO. We predicted an exclusive formation of isobenzofuranone-fused chromane via the 5-exo-dig pathway when the N-tosyl tether is replaced by the O-tether in the internal alkyne in DMSO. The experimental study confirms the theoretical hypothesis and provides a highly chemo-divergent approach for the synthesis of biologically significant chromane with a large substrate scope and up to 95% yield at room temperature.
Collapse
Affiliation(s)
- Anish Gupta
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu, Jammu and Kashmir 181143, India
| | - Sheetal Ranaut
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Athira Kooleri
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Tanvi Jandial
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu, Jammu and Kashmir 181143, India
| | - Neha Rani
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shivnath Mazumder
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu, Jammu and Kashmir 181143, India
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
2
|
Niu J, Wang Y, Yan S, Zhang Y, Ma X, Zhang Q, Zhang W. One-pot Ugi-azide and Heck reactions for the synthesis of heterocyclic systems containing tetrazole and 1,2,3,4-tetrahydroisoquinoline. Beilstein J Org Chem 2024; 20:912-920. [PMID: 38711586 PMCID: PMC11070971 DOI: 10.3762/bjoc.20.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
A new method for the synthesis of heterocyclic systems containing tetrazole and tetrahydroisoquinoline is developed via the performance of one-pot Ugi-azide and Heck cyclization reactions. The integration of the multicomponent and post-condensation reactions in one-pot maximizes the pot-, atom-, and step-economy (PASE).
Collapse
Affiliation(s)
- Jiawei Niu
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Yuhui Wang
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Shenghu Yan
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Yue Zhang
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Xiaoming Ma
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215009, China
| | - Wei Zhang
- Department of Chemistry and Center for Green Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
| |
Collapse
|
3
|
Liu C, Voskressensky LG, Van der Eycken EV. Recent Advances in the Synthesis of Peptidomimetics via Ugi Reactions. Chemistry 2024; 30:e202303597. [PMID: 38123521 DOI: 10.1002/chem.202303597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Peptidomimetics have been extensively explored in many area due to their ability to improve pharmacological qualities and interesting biological activities. Cycles could be incorporated in peptides to reduce their flexibility, often enhancing the affinity for a certain receptor. Many efforts have been made to synthesize various peptidomimetics. Among them, the Ugi reaction is a popular way for the synthesis of peptidomimetics because it provides peptide-like products. The Ugi reaction consists of the condensation of an aldehyde or ketone, a carboxylic acid, an amine, and an isocyanide usually giving a linear peptidomimetic. In order to obtain other linear, cyclic or polycyclic peptidomimetics, the acyclic products have to undergo additional transformations or cyclizations. This review covers the years from 2018-2023, regarding the synthesis of linear, cyclic and polycyclic peptidomimetics, employing Ugi reactions eventually followed by post-Ugi transformations. Organo-catalyzed reactions, base-promoted reactions, and metal-free reactions toward peptidomimetics are highlighted.
Collapse
Affiliation(s)
- Chao Liu
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Leonid G Voskressensky
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, Moscow, 117198, Russian Federation
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium
| |
Collapse
|
4
|
Hooshmand SE, Yazdani H, Hulme C. Six‐Component Reactions and Beyond: The Nuts and Bolts. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Hossein Yazdani
- Independent researcher Independent Researcher Tehran IRAN (ISLAMIC REPUBLIC OF)
| | - Christopher Hulme
- The University of Arizona Department of Chemistry and Biochemistry Tucson UNITED STATES
| |
Collapse
|
5
|
Bagheri M, Mohammadsaeed S, Gholamzadeh P. Annulation of the Ugi Products Using Palladium Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maedeh Bagheri
- Department of Physics and Chemistry Alzahra University, Vanak Square Tehran Iran
| | - Shirin Mohammadsaeed
- Department of Physics and Chemistry Alzahra University, Vanak Square Tehran Iran
| | - Parisa Gholamzadeh
- Young Researchers and Elites Club Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
6
|
Nayebzadeh B, Amiri K, Khosravi H, Mirzaei S, Rominger F, Dar'in D, Krasavin M, Bijanzadeh HR, Balalaie S. Synthesis of Spiro[chromene-imidazo[1,2- a]pyridin]-3'-imines via 6- exo-dig Cyclization Reaction. J Org Chem 2021; 86:13693-13701. [PMID: 34529434 DOI: 10.1021/acs.joc.1c01789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transition-metal-free postmodification of the Groebke-Blackburn-Bienaymé (GBB) reaction for the synthesis of spiro[chromene-imidazo[1,2-a]pyridin]-3'-imine was discovered. The unusual transformation represents the first example of activation and the reaction of the imidazole carbon atom. In this postcondensational modification, KOt-Bu acts as a base, which, after the isomerization of an alkyne moiety to allene, causes the next unique nucleophilic reaction of the imidazole carbon atom that results in spirocyclic structures. The proposed reaction mechanism was confirmed based on the DFT calculations.
Collapse
Affiliation(s)
- Behrouz Nayebzadeh
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697, Iran
| | - Kamran Amiri
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697, Iran
| | - Hormoz Khosravi
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697, Iran
| | - Saber Mirzaei
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran 19697, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences Kermanshah, Kermanshah 67155, Iran
| |
Collapse
|
7
|
Manavi B, Tejeneki HZ, Rominger F, Armaghan M, Frank W, Bijanzadeh HR, Balalaie S. Copper(I)‐Catalyzed Intramolecular Cyclization of
o
‐Propargyloxy Diketopiperazines to Access Diverse Diazabicyclic and Spiro‐Diketopiperazinochromanes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bita Manavi
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Hossein Zahedian Tejeneki
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Mahsa Armaghan
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Walter Frank
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences Tarbiat Modares University Tehran Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
- Medical Biology Research Center Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
8
|
Wu J, Zhao L, Yang ML, Ding MW. Four-Component Synthesis of Polysubstituted Pyrazin-2(1 H)-ones through a Ugi/Staudinger/Aza-Wittig/Isomerization Sequence. J Org Chem 2021; 86:10755-10761. [PMID: 34251829 DOI: 10.1021/acs.joc.1c00735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new efficient synthesis of polysubstituted pyrazin-2(1H)-ones via the sequential Ugi/Staudinger/aza-Wittig/isomerization reaction has been developed. The four-component Ugi reactions of arylglyoxals 1, primary amines 2, α-azidovinyl acids 3, and isocyanides 4 produced the azides 5, which were treated with triphenylphosphine to give pyrazin-2(1H)-ones 6 in good yields through domino Staudinger/aza-Wittig/isomerization reactions.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| | - Long Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| | - Mao-Lin Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| | - Ming-Wu Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
9
|
He Y, Yan Y, Ren Z, Wang Y, Yu Q, Xiong J, Wang M. Regioselective Synthesis of 2,3‐Dihydrobenzo[
f
]isoindolones via Ag‐Catalyzed Sequential Ugi 4CR/Cascade Radical Cyclization Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ying‐Chun He
- Institute of Applied Chemistry Shanxi University Taiyuan 030006 People's Republic of China
| | - Yan‐Mei Yan
- Department of Chemistry Taiyuan Normal University Jinzhong 030619 People's Republic of China
| | - Zhen‐Xing Ren
- Institute of Applied Chemistry Shanxi University Taiyuan 030006 People's Republic of China
| | - Yong‐Zhao Wang
- Engineering Research Center of Ministry of Education for Fine Chemicals Shanxi University Taiyuan 030006 People's Republic of China
| | - Qiang Yu
- Department of medical imaging Shanxi Medical University Taiyuan 030006 People's Republic of China
| | - Jun Xiong
- School of Pharmacy Hubei University of Science and Technology Xianning 437100 People's Republic of China
| | - Meng‐Liang Wang
- Institute of Applied Chemistry Shanxi University Taiyuan 030006 People's Republic of China
| |
Collapse
|
10
|
Millward MJ, Ellis E, Ward JW, Clayden J. Hydantoin-bridged medium ring scaffolds by migratory insertion of urea-tethered nitrile anions into aromatic C-N bonds. Chem Sci 2020; 12:2091-2096. [PMID: 34163972 PMCID: PMC8179327 DOI: 10.1039/d0sc06188c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Bicyclic or tricyclic nitrogen-containing heterocyclic scaffolds were constructed rapidly by intramolecular nucleophilic aromatic substitution of metallated nitriles tethered by a urea linkage to a series of electronically unactivated heterocyclic precursors. The substitution reaction constitutes a ring expansion, enabled by the conformationally constrained tether between the nitrile and the heterocycle. Attack of the metallated urea leaving group on the nitrile generates a hydantoin that bridges the polycyclic products. X-ray crystallography reveals ring-dependant strain within the hydantoin.
Collapse
Affiliation(s)
- Makenzie J Millward
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Emily Ellis
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - John W Ward
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
11
|
Yan YM, Wang ML, Liu YL, He YC. One-pot and regioselective synthesis of functionalized γ-lactams via a metal-free sequential Ugi 4CR/Intramolecular 5-exo-dig cyclization reaction. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Abass M, Alzandi ARA, Hassan MM, Mohamed N. Recent Advances on Diversity Oriented Heterocycle Synthesis of Fused Quinolines and Its Biological Evaluation. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2019.1710856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohamed Abass
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Abdel Rahman A. Alzandi
- Biology Department, Faculty of Sciences & Arts (Almikhwah), Al Baha University, Al Baha, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Noha Mohamed
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Kong XF, Guo XY, Gu ZY, Wei LS, Liu LL, Mo DL, Pan CX, Su GF. Silver(i)-catalyzed selective hydroalkoxylation of C2-alkynyl quinazolinones to synthesize quinazolinone-fused eight-membered N,O-heterocycles. Org Chem Front 2020. [DOI: 10.1039/d0qo00437e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A silver-catalyzed selective 8-endo-dig cyclization of C2-alkynyl quinazolinones was developed to prepare a series of novel quinazolinone-fused eight-membered N,O-heterocycles in good-to-excellent yields under mild reaction conditions.
Collapse
Affiliation(s)
- Xiang-Fei Kong
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- China
| | - Xiu-Yun Guo
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- China
| | - Zi-Yu Gu
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- China
| | - Lin-Su Wei
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- China
| | - Lu-Lu Liu
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- China
| | - Dong-Liang Mo
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- China
| | - Cheng-Xue Pan
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- China
| | - Gui-Fa Su
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
14
|
Peng H, Jiang K, Zhen G, Wang F, Yin B. Access to N-unprotected 2-amide-substituted indoles from Ugi adducts via palladium-catalyzed intramolecular cyclization of o-iodoanilines bearing furan rings. RSC Adv 2020; 10:11750-11754. [PMID: 35496608 PMCID: PMC9050509 DOI: 10.1039/d0ra01830a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/28/2020] [Indexed: 11/21/2022] Open
Abstract
A variety of N-unprotected 2-amide-substituted indoles were synthesized from readily available furfural-based Ugi adducts in moderate to good yields via palladium-catalyzed intramolecular cyclization of o-iodoanilines bearing furan rings. These reactions involved a cascade sequence consisting of dearomatizing arylation, opening of the furan ring, and deprotection of the N atom. A variety of N-unprotected 2-amide-substituted indoles were synthesized from readily available furfural-based Ugi adducts in moderate to good yields via palladium-catalyzed intramolecular cyclization of o-iodoanilines bearing furan rings.![]()
Collapse
Affiliation(s)
- Hui Peng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Guangjin Zhen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Furong Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|