1
|
Kelemen V, Bege M, Debreczeni N, Bereczki I, Bényei AC, Herczegh P, Borbás A. Stereoselective Synthesis of 1,2-cis-α-Glycosyl Thiols and Trehalose-Type α,α'-Thiodisaccharides by Cryo Thiol-Ene Photocoupling - Thio-Click Reaction in Frozen State. Chemistry 2025; 31:e202500104. [PMID: 40029029 DOI: 10.1002/chem.202500104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Indexed: 03/05/2025]
Abstract
α-Glycosyl thiols are key building blocks for the formation of stable thioglycoside mimetics of widespread and biologically relevant α-O-glycosides, which urges their efficient synthesis. Here, we demonstrate that the photoinitiated radical-mediated addition of thioacetic acid to 2-substituted glycals followed by selective S-deacetylation is a generally applicable and fully stereoselective method for the synthesis of 1,2-cis-α-glycosyl thiols. The low reactivity of thioacetic acid in the radical reaction was overcome by carrying out the reaction in AcOH at -80 °C, in frozen state, with UVA irradiation, achieving high yields irrespective of the sugar configurations. For effective irradiation and simultaneous effective cooling, a self-made spiral vessel reactor was used, which also enables large-scale synthesis. By subjecting 1,2-cis-α-1-thiosugars to a second thiol-ene coupling reaction with 2-substituted glycals, 34 trehalose-type symmetrical and unsymmetrical α,α'-thiodi- and oligosaccharides were obtained with full stereoselectivity. Moreover, the oxidation of α-1-thiosugars provided an easy access to α,α'-diglycosyl disulfides.
Collapse
Affiliation(s)
- Viktor Kelemen
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
- HUN-REN-UD Pharmamodul Research Group, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | - Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
- Institute of Healthcare Industry, University of Debrecen, 4032, Debrecen, Nagyerdei krt. 98, Hungary
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Nóra Debreczeni
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
- HUN-REN-UD Pharmamodul Research Group, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | - Attila Csaba Bényei
- Department of Physical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
- HUN-REN-UD Pharmamodul Research Group, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| |
Collapse
|
2
|
Wan X, Huang H, Deng Y, Yuan Y, Deng GJ. Chemoselective Hydroheteroarylation of Alkenes via Photoredox-Neutral Proton- and BF 3-Mediated Electron Transfer. Org Lett 2024; 26:7707-7712. [PMID: 39196813 DOI: 10.1021/acs.orglett.4c02825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Herein, we have developed a complementary entry to enable hydroheteroarylation of alkenes involving basically photoredox dearomatizative heterocyclic carbon radical formation through acid-coupled electron transfer followed by Giese addition. While protonic solvent and thiophenol additive enabled two molecular hydroheteroarylations of alkenes, the nonproton environment with BF3 altered the chemoselectivity over cascade hydroheteroarylation of alkenes by radical addition of heteroaromatics with two molecular alkenes. This chemoselectivity can be mechanistically attributed to the dynamically favored hydrogen atom transfer via the cyclic transition state.
Collapse
Affiliation(s)
- Xiaoyuan Wan
- College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Huawen Huang
- College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yujie Deng
- College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yuezhou Yuan
- College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Guo-Jun Deng
- College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
3
|
Liu G, Xu S, Yue Y, Su C, Song W. Synthesis of thioesters using an electrochemical three-component reaction involving elemental sulfur. Chem Commun (Camb) 2024; 60:6154-6157. [PMID: 38804515 DOI: 10.1039/d4cc01910e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
An electrochemical three-component reaction involving elemental sulfur is disclosed for achieving a metal-free, oxidant-free synthesis of thioesters in a high atom-economical, step-economical and chemoselective manner. A mechanistic investigation indicates that the use of elemental sulfur to trap acyl radical derived from radical umpolung of α-keto acid with an electrochemical design can efficiently generate a carbonyl thiyl radical, which can further be captured by diazoalkane to afford various thioesters.
Collapse
Affiliation(s)
- Gongbo Liu
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| | - Shuoyu Xu
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| | - Yangyang Yue
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| | - Changhui Su
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| | - Wangze Song
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| |
Collapse
|
4
|
Lipilin DL, Zubkov MO, Kosobokov MD, Dilman AD. Direct conversion of carboxylic acids to free thiols via radical relay acridine photocatalysis enabled by N-O bond cleavage. Chem Sci 2024; 15:644-650. [PMID: 38179514 PMCID: PMC10762721 DOI: 10.1039/d3sc05513b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Carboxylic acids and thiols are basic chemical compounds with diverse utility and widespread reactivity. However, the direct conversion of unprotected acids to thiols is hampered due to a fundamental problem - free thiols are incompatible with the alkyl radicals formed on decarboxylation of carboxylic acids. Herein, we describe a concept for the direct photocatalytic thiolation of unprotected acids allowing unprotected thiols and their derivatives to be obtained. The method is based on the application of a thionocarbonate reagent featuring the N-O bond. The reagent serves both for the rapid trapping of alkyl radicals and for the facile regeneration of the acridine-type photocatalyst.
Collapse
Affiliation(s)
- Dmitry L Lipilin
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Mikhail D Kosobokov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
5
|
Herrick RM, Abd El-Gaber MK, Coy G, Altman RA. A diselenide additive enables photocatalytic hydroalkoxylation of gem-difluoroalkenes. Chem Commun (Camb) 2023; 59:5623-5626. [PMID: 37082905 PMCID: PMC10164105 DOI: 10.1039/d3cc01012k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
A photocatalytic hydroalkoxylation reaction enables the coupling of aliphatic alcohols with gem-difluoroalkenes, expanding the scope of accessible α,α-difluorinated ethers, a desirable substructure for medicinal and agricultural chemists. This reaction exploits an uncommon diselenide co-catalyst to facilitate the net hydrofunctionalization process, which contrasts alternate single-electron reactions that deliver dioxidation products. Future use of this co-catalyst might enable other currently unknown photocatalytic reactions.
Collapse
Affiliation(s)
- Ryan M Herrick
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Mohammed K Abd El-Gaber
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, USA.
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gabriela Coy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, USA.
- Department of Pharmacy, Universidad Nacional de Colombia, Bogota 111321, Colombia
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, USA.
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA
| |
Collapse
|
6
|
Sorrentino JP, Herrick RM, Abd El-Gaber MK, Abdelazem AZ, Kumar A, Altman RA. General Co-catalytic Hydrothiolation of gem-Difluoroalkenes. J Org Chem 2022; 87:16676-16690. [PMID: 36469658 PMCID: PMC9772298 DOI: 10.1021/acs.joc.2c02343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regioselective functionalization of gem-difluoroalkenes enables convergent late-stage access to fluorinated functional groups, though most functionalization reactions proceed through defluorinative functionalization processes that deliver mono-fluorovinyl products. In contrast, fewer reactions undergo net hydrofunctionalization to generate difluorinated products. Herein, we report a photocatalytic hydrothiolation of gem-difluoroalkenes that enables access to a broad spectrum of α,α-difluoroalkylthioethers. Notably, the reaction successfully couples nonactivated substrates, which expands the scope of accessible molecules relative to previously reported reactions involving organo- or photocatalytic strategies. Further, this reaction successfully couples biologically relevant molecules under aqueous conditions, highlighting potential applications in both late-stage and biorthogonal functionalizations.
Collapse
Affiliation(s)
- Jacob P. Sorrentino
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Ryan M. Herrick
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
| | - Mohammed K. Abd El-Gaber
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed Z. Abdelazem
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
- Biotechnology & Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62517, Egypt
| | - Ankit Kumar
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ryan A. Altman
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
7
|
Mandal T, Mallick S, Kumari N, De Sarkar S. Visible-Light-Mediated Synthesis of Phenanthrenes through Successive Photosensitization and Photoredox by a Single Organocatalyst. Org Lett 2022; 24:8452-8457. [DOI: 10.1021/acs.orglett.2c03612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Samrat Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Nidhi Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
8
|
Hopkins BA, Zavesky B, White D. Thioetherification of Aryl Halides with Thioacetates. J Org Chem 2022; 87:7547-7550. [PMID: 35580300 DOI: 10.1021/acs.joc.2c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed cross-coupling of thioacetates and aryl halides is described herein. Using a catalyst screening kit, tBuBrettPhos Pd G3 was found to be a unique catalyst for this reaction, affording the desired thioarene products in high yields under mild reaction conditions. The thioacetate starting materials are readily available, allowing for quick access to these more lab friendly reagents. Reactions described herein range from the late-stage coupling of complex thioacetates to the first report of a mild set of conditions for thiomethylation of aryl halides.
Collapse
Affiliation(s)
- Brett Andrew Hopkins
- Corteva Agriscience Discovery Chemistry, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Blane Zavesky
- Corteva Agriscience Discovery Chemistry, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Derick White
- Corteva Agriscience Discovery Chemistry, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
9
|
Hong JE, Jung Y, Min D, Jang M, Kim S, Park J, Park Y. Visible-Light-Induced Organophotocatalytic Difunctionallization: Open-Air Hydroxysulfurization of Aryl Alkenes with Aryl Thiols. J Org Chem 2022; 87:7378-7391. [PMID: 35561230 DOI: 10.1021/acs.joc.2c00595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a regioselective visible-light-induced organophotoredox catalytic difunctionalization method to prepare β-hydroxysulfides using aryl alkenes and aryl thiols as substrates. The reaction provides a wide substrate scope of aryl alkenes (from simple styrene to complex bioactive compounds) and aryl thiols (from diverse heteroaromatic thiols to nonheteroaromatic thiols) (total 45 examples, up to 88% yield). Based on the combined experimental and computational studies, we demonstrate that in situ generated hydroperoxyl radicals from O2 in air react with benzylic radicals, which restrains the reaction between benzylic radicals and the acidic form of thiols in a classical thiol-ene radical reaction. We show that difunctionalization is possible due to the choice of bases, diluted substrate concentrations, increment in catalyst loading, and selection of suitable aryl thiols under aerobic conditions. Considering the biological importance of heteroaromatic thiols and the lack of methods to install them, our approach offers a platform to derive various β-hydroxysulfides that contain aromatic elements.
Collapse
Affiliation(s)
- Jee Eun Hong
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Yeonghun Jung
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Dahye Min
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Minji Jang
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Soomin Kim
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Jiyong Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yohan Park
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| |
Collapse
|
10
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Xiao Q, Tong QX, Zhong JJ. Recent Advances in Visible-Light Photoredox Catalysis for the Thiol-Ene/Yne Reactions. Molecules 2022; 27:molecules27030619. [PMID: 35163886 PMCID: PMC8839682 DOI: 10.3390/molecules27030619] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Visible-light photoredox catalysis has been established as a popular and powerful tool for organic transformations owing to its inherent characterization of environmental friendliness and sustainability in the past decades. The thiol-ene/yne reactions, the direct hydrothiolation of alkenes/alkynes with thiols, represents one of the most efficient and atom-economic approaches for the carbon-sulfur bonds construction. In traditional methodologies, harsh conditions such as stoichiometric reagents or a specialized UV photo-apparatus were necessary suffering from various disadvantages. In particular, visible-light photoredox catalysis has also been demonstrated to be a greener and milder protocol for the thiol-ene/yne reactions in recent years. Additionally, unprecedented advancements have been achieved in this area during the past decade. In this review, we will summarize the recent advances in visible-light photoredox catalyzed thiol-ene/yne reactions from 2015 to 2021. Synthetic strategies, substrate scope, and proposed reaction pathways are mainly discussed.
Collapse
Affiliation(s)
- Qian Xiao
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China;
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Qing-Xiao Tong
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
- Correspondence: (Q.-X.T.); (J.-J.Z.)
| | - Jian-Ji Zhong
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
- The Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou 515063, China
- Correspondence: (Q.-X.T.); (J.-J.Z.)
| |
Collapse
|
12
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Motimani NM, Ngubane S, Smith GS. Polynuclear heteroleptic ruthenium(II) photoredox catalysts: Evaluation in blue-light-mediated, regioselective thiol-ene reactions. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Le CMQ, Schrodj G, Ndao I, Bessif B, Heck B, Pfohl T, Reiter G, Elgoyhen J, Tomovska R, Chemtob A. Semi-Crystalline Poly(thioether) Prepared by Visible-Light-Induced Organocatalyzed Thiol-ene Polymerization in Emulsion. Macromol Rapid Commun 2021; 43:e2100740. [PMID: 34890084 DOI: 10.1002/marc.202100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Indexed: 11/10/2022]
Abstract
A photocatalytic thiol-ene aqueous emulsion polymerization under visible-light is described to prepare linear semicrystalline latexes using 2,2'-dimercaptodiethyl sulfide as dithiol and various dienes. The procedure involves low irradiance (3 mW cm-2 ), LED irradiation source, eosin-Y disodium as organocatalyst, low catalyst loading (<0.05% mol), and short reaction time scales (<1 h). The resulting latexes have molecular weights of about 10 kg mol-1 , average diameters of 100 nm, and a linear structure consisting only of thioether repeating units. Electron-transfer reaction from a thiol to the triplet excited state of the photocatalyst is suggested as the primary step of the mechanism (type I), whereas oxidation by singlet oxygen generated by energy transfer has a negligible effect (type II). Only polymers prepared with aliphatic dienes such as diallyl adipate or di(ethylene glycol) divinyl ether exhibit a high crystallization tendency as revealed by differential scanning calorimetry, polarized optical microscopy, and X-ray diffraction. Ordering and crystallization are driven by molecular packing of poly(thioether) chains combining structural regularity, compactness, and flexibility.
Collapse
Affiliation(s)
- Cuong Minh Quoc Le
- Institut de Sciences des Matériaux de Mulhouse (IS2M) UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, Mulhouse, Cedex, 68057, France
| | - Gautier Schrodj
- Institut de Sciences des Matériaux de Mulhouse (IS2M) UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, Mulhouse, Cedex, 68057, France
| | - Ibrahima Ndao
- Institut de Sciences des Matériaux de Mulhouse (IS2M) UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, Mulhouse, Cedex, 68057, France
| | - Brahim Bessif
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg, 79104, Germany
| | - Barbara Heck
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg, 79104, Germany
| | - Thomas Pfohl
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg, 79104, Germany
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg, 79104, Germany
| | - Justine Elgoyhen
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa, 72, Donostia-San Sebastian, 20018, Spain
| | - Radmila Tomovska
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa, 72, Donostia-San Sebastian, 20018, Spain
| | - Abraham Chemtob
- Institut de Sciences des Matériaux de Mulhouse (IS2M) UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, Mulhouse, Cedex, 68057, France
| |
Collapse
|
15
|
Kaur S, Luciano DP, Fan X, Zhao G, Messier S, Walker MM, Zhang Q, Wang T. Radical functionalization of thioglycosides in aqueous medium. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Dmitriev IA, Levin VV, Dilman AD. Boron Chelates Derived from N-Acylhydrazones as Radical Acceptors: Photocatalyzed Coupling of Hydrazones with Carboxylic Acids. Org Lett 2021; 23:8973-8977. [PMID: 34752109 DOI: 10.1021/acs.orglett.1c03501] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Difluoroboryl complexes obtained from N-acyl hydrazones upon brief treatment with boron trifluoride and allylic silane serve as efficient acceptors of alkyl radicals. The reaction of the boryl chelates with carboxylic acids in the presence of an acridine-type photocatalyst leading to N-acyl hydrazides is described. The efficiency of addition at the C═N bond of the chelates is determined by the formation of a nitrogen-centered radical stabilized by the boron-containing heterocyclic ring.
Collapse
Affiliation(s)
- Igor A Dmitriev
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
17
|
Sorrentino JP, Altman RA. Fluorine-Retentive Strategies for the Functionalization of gem-Difluoroalkenes. SYNTHESIS-STUTTGART 2021; 53:3935-3950. [PMID: 34707322 DOI: 10.1055/a-1547-9270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
gem-Difluoroalkenes are readily available fluorinated building blocks, and the fluorine-induced electronic perturbations of the alkenes enables a wide array of selective functionalization reactions. However, many reactions of gem-difluoroalkenes result in a net C─F functionalization to generate monofluorovinyl products or addition of F to generate trifluoromethyl-containing products. In contrast, fluorine-retentive strategies for the functionalization of gem-difluoroalkenes remain less generally developed, and is now becoming a rapidly developing area. This review will present the development of fluorine-retentive strategies including electrophilic, nucleophilic, radical, and transition metal catalytic strategies with an emphasis on key physical organic and mechanistic aspects that enable reactivities.
Collapse
Affiliation(s)
- Jacob P Sorrentino
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
18
|
Murakami S, Nanjo T, Takemoto Y. Photocatalytic Activation of Elemental Sulfur Enables a Chemoselective Three-Component Thioesterification. Org Lett 2021; 23:7650-7655. [PMID: 34528809 DOI: 10.1021/acs.orglett.1c02904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A mild and chemoselective three-component thioesterification using olefins, α-ketoacids, and elemental sulfur has been developed. The photocatalytic activation of elemental sulfur, a cheap and abundant sulfur source, enables the rapid installation of a sulfur atom into molecules, reactions that ordinarily would require the use of reactive and malodorous sulfur-containing compounds such as thiols and thioacids. This novel reaction is characterized by high yields and a broad substrate scope, which enables the introduction of thioester moieties into complex molecules including a steroid, a peptide, and a nonprotected glycoside. Mechanistic studies indicated that the success of this transformation depends on the multiple roles played by the elemental sulfur, including those of a sulfurizing agent, a terminal oxidant, and a HAT mediator.
Collapse
Affiliation(s)
- Sho Murakami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Zhao Y, Rui J, Du Q, Chen R, Zhan Y, Zheng X, Wu X. Catalytic base-controlled regiodivergent heteronucleophilic hydrofunctionalization of β,γ-unsaturated amides. Chem Commun (Camb) 2021; 57:9756-9759. [PMID: 34477183 DOI: 10.1039/d1cc03440e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general catalytic base-controlled regiodivergent nucleophilic hydrofunctionalization of both terminal and internal β,γ-unsaturated amides has been reported. The atom-economical addition of various S/P-based nucleophiles was also exclusively chemoselective. More than 60 branched or linear hetero-substituted aliphatic amides were synthesized from common starting materials under transition-metal-free conditions. Preliminary mechanistic studies are consistent with our proposed divergent catalytic cycles.
Collapse
Affiliation(s)
- Yao Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jiacheng Rui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Qiang Du
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Zhan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xintao Zheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaojin Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
20
|
Zubkov MO, Kosobokov MD, Dilman AD. Radical Functionalization of Geminal Difluoroalkenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021070010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Sunagawa DE, Ishida N, Iwamoto H, Ohashi M, Fruit C, Ogoshi S. Synthesis of Fluoroalkyl Sulfides via Additive-Free Hydrothiolation and Sequential Functionalization Reactions. J Org Chem 2021; 86:6015-6024. [PMID: 33781063 DOI: 10.1021/acs.joc.1c00361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A modular synthetic method, involving a hydrothiolation, silylation, and fluoroalkylation, for the construction of highly functionalized fluoroalkyl sulfides has been developed. The use of aprotic polar solvents enables the additive-free chemoselective hydrothiolation of tetrafluoroethylene, trifluorochloroethylene, and hexafluoropropene with various thiols. The stepwise functionalization reactions convert the hydrothiolated intermediates into the tetrafluoroethyl sulfides in high efficiency. The method avoids the use of the environmental pollutant Halon-2402, which was employed as a building block in a reported synthetic route.
Collapse
Affiliation(s)
- Denise E Sunagawa
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoyoshi Ishida
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Iwamoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masato Ohashi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Corinne Fruit
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, F-76000 Rouen, France
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Levin VV, Dilman AD. Alkene homologation via visible light promoted hydrophosphination using triphenylphosphonium triflate. Chem Commun (Camb) 2021; 57:749-752. [PMID: 33346287 DOI: 10.1039/d0cc07025d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrophosphination reaction of alkenes with triphenylphosphonium triflate under photocatalytic conditions is described. The reaction is promoted by naphthalene-fused N-acylbenzimidazole and is believed to proceed through intermediate formation of a phosphinyl radical cation. The resulting phosphonium salts are directly involved in the Wittig reaction leading to homologated alkenes.
Collapse
Affiliation(s)
- Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
23
|
McCourt RO, Scanlan EM. Atmospheric Oxygen Mediated Radical Hydrothiolation of Alkenes. Chemistry 2020; 26:15804-15810. [DOI: 10.1002/chem.202002542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/08/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Ruairí O. McCourt
- School of Chemistry Trinity Biomedical Sciences Institute (TBSI) Trinity College Dublin The University of Dublin Dublin 2 Ireland
| | - Eoin M. Scanlan
- School of Chemistry Trinity Biomedical Sciences Institute (TBSI) Trinity College Dublin The University of Dublin Dublin 2 Ireland
| |
Collapse
|
24
|
Das A, Thomas KRJ. Facile Thiol–Ene Click Protocol Using Benzil as Sensitizer and White LED as Light Source. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory Department of Chemistry Indian Institute of Technology Roorkee 247667 Roorkee – India
| | - K. R. Justin Thomas
- Organic Materials Laboratory Department of Chemistry Indian Institute of Technology Roorkee 247667 Roorkee – India
| |
Collapse
|
25
|
Srivastava V, Singh PK, Srivastava A, Singh PP. Recent application of visible-light induced radicals in C-S bond formation. RSC Adv 2020; 10:20046-20056. [PMID: 35520400 PMCID: PMC9054237 DOI: 10.1039/d0ra03086d] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 01/20/2023] Open
Abstract
The sulphur centered radicals, produced from various organic compounds, in high efficiency by single-electron-transfer (SET) oxidation. These radicals are highly reactive intermediates having various applications in the construction of organosulphur compounds in the field of synthetic organic chemistry. These S-centred radical-mediated organic transformations have been achieved using photoredox catalysts, including organic dyes and transition metal catalysts, as well as in the absence of any catalyst. Compared with previous methods, photoredox catalysis is inexpensive and features the advantages of being environmentally benign, highly efficient and easy to use. This review focuses on recent developments in the photocatalyzed carbon-sulphur bond formation.
Collapse
Affiliation(s)
- Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj 211002 India
| | - Pravin K Singh
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj 211002 India
| | - Arjita Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj 211002 India
| | - Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Naini Prayagraj 211010 India
| |
Collapse
|
26
|
Dey S, Gupta A, Saha A, Pal S, Kumar S, Manna D. Sunlight-Mediated Thiol-Ene/Yne Click Reaction: Synthesis and DNA Transfection Efficiency of New Cationic Lipids. ACS OMEGA 2020; 5:735-750. [PMID: 31956824 PMCID: PMC6964310 DOI: 10.1021/acsomega.9b03413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
The design of green synthetic reaction conditions is very challenging, especially for biomaterials, but worthwhile if the compounds can be easily synthesized in the aqueous medium. Herein, we report the development of sunlight-mediated thiol-ene/yne click reaction in the presence of a catalytic amount of tert-butyl hydroperoxide (TBHP) in an aqueous medium. The optimized reaction conditions were successfully applied to synthesize a series of small molecules and lipids in a single step in the aqueous medium. The synthetic cationic lipid/co-lipid formed positively charged stable nanosized liposomes that effectually bind with the genetic materials. The in vitro DNA transfection and cellular uptake assays showed that the synthesized cationic lipids have comparable efficiency to commercially available Lipofectamine 2000. This mild synthetic strategy can also be used for smart design of novel or improvement of prevailing lipid-based nonviral gene delivery systems. Such chemical transformations in the aqueous medium are more environment-friendly than other reported thiol-ene/yne click reactions performed in an organic solvent medium.
Collapse
Affiliation(s)
- Subhasis Dey
- Department
of Chemistry and Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Gupta
- Department
of Chemistry and Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Abhishek Saha
- Department
of Chemistry and Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudipa Pal
- Department
of Chemistry and Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sachin Kumar
- Department
of Chemistry and Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Debasis Manna
- Department
of Chemistry and Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
27
|
Ho HE, Pagano A, Rossi-Ashton JA, Donald JR, Epton RG, Churchill JC, James MJ, O'Brien P, Taylor RJK, Unsworth WP. Visible-light-induced intramolecular charge transfer in the radical spirocyclisation of indole-tethered ynones. Chem Sci 2019; 11:1353-1360. [PMID: 34123259 PMCID: PMC8148050 DOI: 10.1039/c9sc05311e] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Indole-tethered ynones form an intramolecular electron donor–acceptor complex that can undergo visible-light-induced charge transfer to promote thiyl radical generation from thiols. This initiates a novel radical chain sequence, based on dearomatising spirocyclisation with concomitant C–S bond formation. Sulfur-containing spirocycles are formed in high yields using this simple and mild synthetic protocol, in which neither transition metal catalysts nor photocatalysts are required. The proposed mechanism is supported by various mechanistic studies, and the unusual radical initiation mode represents only the second report of the use of an intramolecular electron donor–acceptor complex in synthesis. Indole-tethered ynones form an intramolecular electron donor–acceptor complex that can undergo visible-light-induced charge transfer to promote thiyl radical generation from thiols.![]()
Collapse
Affiliation(s)
- Hon Eong Ho
- Department of Chemistry, University of York York YO10 5DD UK
| | - Angela Pagano
- Department of Chemistry and Industrial Chemistry, University of Genova via Dodecaneso, 31 16146 Genova Italy
| | | | - James R Donald
- Department of Chemistry, University of York York YO10 5DD UK
| | - Ryan G Epton
- Department of Chemistry, University of York York YO10 5DD UK
| | | | - Michael J James
- Department of Chemistry, University of York York YO10 5DD UK
| | - Peter O'Brien
- Department of Chemistry, University of York York YO10 5DD UK
| | | | | |
Collapse
|
28
|
Zubkov MO, Kosobokov MD, Levin VV, Kokorekin VA, Korlyukov AA, Hu J, Dilman AD. A novel photoredox-active group for the generation of fluorinated radicals from difluorostyrenes. Chem Sci 2019; 11:737-741. [PMID: 34123046 PMCID: PMC8146146 DOI: 10.1039/c9sc04643g] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A 4-tetrafluoropyridinylthio group was suggested as a new photoredox-active moiety. The group can be directly installed on difluorostyrenes in a single step by the thiolene click reaction. It proceeds upon visible light catalysis with 9-phenylacridine providing various difluorinated sulfides as radical precursors. Single electron reduction of the C–S bond with the formation of fluoroalkyl radicals is enabled by the electron-poor azine ring. The intermediate difluorinated sulfides were involved in a series of photoredox reactions with silyl enol ethers, alkenes, nitrones and an alkenyl trifluoroborate. A new photoredox-active group was applied for the generation of fluorinated radicals from difluorostyrenes under blue light irradiation.![]()
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia .,Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia 9 Miusskaya sq. 125047 Moscow Russia
| | - Mikhail D Kosobokov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia
| | - Vladimir A Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia .,I. M. Sechenov First Moscow State Medical University 8-2 Trubetskaya st. 119991 Moscow Russia
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences 28 Vavilova st. 119991 Moscow Russia.,Pirogov Russian National Research Medical University 1 Ostrovitianov st. 117997 Moscow Russia
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Ling-Ling Road 200032 Shanghai China
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia
| |
Collapse
|