1
|
Liu F, Yan X, Cai F, Hou W, Dong J, Yin SF, Huang G, Chen T, Szostak M, Zhou Y. Divergent alkynylative difunctionalization of amide bonds through C-O deoxygenation versus C-N deamination. Nat Commun 2025; 16:1294. [PMID: 39900580 PMCID: PMC11791076 DOI: 10.1038/s41467-024-55618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 12/18/2024] [Indexed: 02/05/2025] Open
Abstract
The transformation and utilization of amides are significant in organic synthesis and drug discovery. Here we demonstrate a divergent alkynylative difunctionalization of amides in a single transformation. In this reaction, amides react with an organometallic nucleophile to form a tetrahedral intermediate. By altering the N-substitution or the acyl group, the tetrahedral intermediate species selectively undergoes C-O or C-N cleavage with a concomitant capture by an alkynyl nucleophile generated in situ. This process enables the selective introduction of two different functional groups into the amide molecular architecture, producing valuable propargyl amine and propargyl alcohol products. The selectivity between deoxygenation and deamination process has been further elucidated by DFT calculations. Overall, this reaction successfully transforms the traditional mode of nucleophilic acyl addition to amides to a divergent C-O/C-N cleavage. The particularly wide substrate scope, including late-stage modification of bioactive molecules, demonstrates its potential broad applications in organic synthesis.
Collapse
Affiliation(s)
- Feng Liu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Xueyuan Yan
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fangfang Cai
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Wenjuan Hou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Jianyu Dong
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China.
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
| | - Tieqiao Chen
- College of Chemical Engineering and Technology, Hainan University, Haikou, China.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, USA.
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
2
|
Lin J, Tian J, Lu Y, Xu Y, Chen L, Jiang Y, Guo M, Zhang X, Zhang C. Divergent Synthesis of Enynals and Dihydrobenzo[ f]isoquinolines via Deoxyalkynylation of Enaminones Enabled by the Cooperative Action of Tf 2O/Pd/Cu. J Org Chem 2024; 89:16419-16425. [PMID: 39462843 DOI: 10.1021/acs.joc.4c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
A variety of enynals and dihydrobenzo[f]isoquinolines were effectively synthesized with favorable functional group compatibility via deoxyalkynylation of enaminones enabled by the cooperative action of Tf2O/Pd/Cu. The reaction system demonstrated the ability to be expanded to the deoxyarylation/deoxyaryloxylation of enaminones with arylboronic acids or phenols, facilitating the efficient formation of C-C/C-O bonds and showcasing the practicality and versatility of the methodology.
Collapse
Affiliation(s)
- Jianping Lin
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Jiakai Tian
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yu Lu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yiming Xu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yucai Jiang
- Department of Pharmacy, Affiliated Hospital of Putian University, Putian 35110, P. R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Xiaohan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| |
Collapse
|
3
|
Lu J, Li Z, Deng L. Deoxygenative Nucleophilic Phosphonation and Electrophilic Alkylation of Secondary Amides: A Facile Access to Quaternary α-Aminophosphonates. J Am Chem Soc 2024; 146:4357-4362. [PMID: 38334815 DOI: 10.1021/jacs.3c14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The widespread occurrence and synthetic accessibility of amides render them valuable precursors for the synthesis of diverse nitrogen-containing compounds. Herein, we present a metal-free and streamlined synthetic strategy for the synthesis of quaternary α-aminophosphonates. This approach involves sequential deoxygenative nucleophilic phosphonation and versatile electrophilic alkylation of secondary amides in a one-pot fashion. Notably, this method enables the direct bis-functionalization of secondary amides with both nucleophiles and electrophiles for the first time, with simple derivatization leading to valuable free α-aminophosphonates by hydrolysis. The protocol has the advantages of operational simplicity, broad functional-group compatibility, environmental friendliness, and scalability to multigram quantities.
Collapse
Affiliation(s)
- Jiaxiang Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Zhenghua Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| |
Collapse
|
4
|
Mondal S, Mondal S, Saha A. Thiuram Disulfide Mediated Cu-Catalyzed Amidation of Terminal Alkynes: An Efficient Synthesis of Alkynyl Amides. J Org Chem 2024; 89:2182-2189. [PMID: 38326283 DOI: 10.1021/acs.joc.3c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Terminal alkynes undergo a CO-free aminocarbonylation reaction mediated by thiuram disulfides. Thiuram disulfide acts as the source of the carbamoyl group in the amidation of terminal alkynes in the presence of copper-based reagent and catalyst. A series of alkynyl amides has been prepared with several structural variations following the current one-pot two-step protocol. The reaction proceeds through a mixed disulfide intermediate, which has been isolated and characterized by single-crystal XRD analysis.
Collapse
Affiliation(s)
- Sourav Mondal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Amit Saha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
5
|
Tonis E, Frousiou E, Heliopoulos NS, Kagkoura A, Stangel C, Siamidis D, Galeou A, Prombona A, Stamatakis K, Boukos N, Tagmatarchis N, Vougioukalakis GC. VAR Fabric Modification: Inducing Antibacterial Properties, Altering Wettability/Water Repellence, and Understanding Reactivity at the Molecular Level. ACS OMEGA 2023; 8:44708-44716. [PMID: 38046315 PMCID: PMC10688117 DOI: 10.1021/acsomega.3c05552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/19/2023] [Indexed: 12/05/2023]
Abstract
The present work focuses on the surface coating of VAR technical fibers, consisting of 64% viscose (cellulose), 24% Kevlar, 10% other types of polyamides, and 2% antistatic polymers. Kevlar is an aramid material exhibiting excellent mechanical properties, while cellulose is a natural linear polymer composed of repeating β-d-glucose units, having several applications in the materials industry. Herein, we synthesized novel, tailor-designed organic molecules possessing functional groups able to anchor on VAR fabrics and cellulose materials, thus altering their properties on demand. To this end, we utilized methyl-α-d-glucopyranose as a model compound, both to optimize the reaction conditions, before applying them to the material and to understand the chemical behavior of the material at the molecular level. The efficient coating of the VAR fabric with the tailor-made compounds was then implemented. Thorough characterization studies using Raman and IR spectroscopies as well as SEM imaging and thermogravimetric analysis were also carried out. The wettability and water repellency and antibacterial properties of the modified VAR fabrics were also investigated in detail. To the best of our knowledge, such an approach has not been previously explored, among other factors regarding the understanding of the anchoring mechanism at the molecular level. The proposed modification protocol holds the potential to improve the properties of various cellulose-based materials beyond VAR fabrics.
Collapse
Affiliation(s)
- Efstathios Tonis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Efrosyni Frousiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Nikolaos S Heliopoulos
- 700 Military Factory, Supreme Military Support Command, 50 Anapafseos, Piraeus 18648, Greece
| | - Antonia Kagkoura
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | | | - Angeliki Galeou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., Agia Paraskevi,Athens, Attica 15341, Greece
| | - Anastasia Prombona
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., Agia Paraskevi,Athens, Attica 15341, Greece
| | - Kostas Stamatakis
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., Agia Paraskevi,Athens, Attica 15341, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., Agia Paraskevi,Athens, Attica 15341, Greece
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Georgios C Vougioukalakis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| |
Collapse
|
6
|
Bhat MY, Padder AH, Gupta R, Ahmed QN. Tf 2O-Promoted Regioselective Heteronucleophilic Ring-Opening Approaches of Tetrahydrofuran. J Org Chem 2023; 88:14323-14338. [PMID: 37817465 DOI: 10.1021/acs.joc.3c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The ring-opening functionalization strategy in tetrahydrofuran (THF) represents an ideal approach to access different valuable structures. Herein, we report different operationally simple, efficient, unique, and practical regioselective heteronucleophilic ring-opening strategies for the THF system. Tf2O, which is a strong electrophilic activator, was found to generate a THF triflate intermediate that triggers the nucleophilicity of nitriles (Nu1) and led to regioselective ring opening in the presence of different nucleophiles (Nu2). Furthermore, the synthesis of different heteronucleophilic ring-opening dimerization products was attributed to the nucleophilicity of Nu2. We also demonstrated that use of borane-tetrahydrofuran (BTHF) can achieve challenging hydride addition in a similar manner.
Collapse
Affiliation(s)
- Mohammad Yaqoob Bhat
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashiq Hussain Padder
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Raman Gupta
- Department of Chemistry, Govt. College of Engineering and Technology, Jammu 181122, India
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Davison N, McMullin CL, Zhang L, Hu SX, Waddell PG, Wills C, Dixon C, Lu E. Li vs Na: Divergent Reaction Patterns between Organolithium and Organosodium Complexes and Ligand-Catalyzed Ketone/Aldehyde Methylenation. J Am Chem Soc 2023; 145:6562-6576. [PMID: 36890641 PMCID: PMC10037334 DOI: 10.1021/jacs.3c01033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 03/10/2023]
Abstract
Organosodium chemistry is underdeveloped compared with organolithium chemistry, and all the reported organosodium complexes exhibit similar, if not identical, reactivity patterns to their lithium counterparts. Herein, we report a rare organosodium monomeric complex, namely, [Na(CH2SiMe3)(Me6Tren)] (1-Na) (Me6Tren: tris[2-(dimethylamino)ethyl]amine) stabilized by a tetra-dentate neutral amine ligand Me6Tren. Employing organo-carbonyl substrates (ketones, aldehydes, amides, ester), we demonstrated that 1-Na features distinct reactivity patterns compared with its lithium counterpart, [Li(CH2SiMe3)(Me6Tren)] (1-Li). Based on this knowledge, we further developed a ligand-catalysis strategy to conduct ketone/aldehyde methylenations, using [NaCH2SiMe3]∞ as the CH2 feedstock, replacing the widely used but hazardous/expensive C═O methylenation methods, such as Wittig, Tebbe, Julia/Julia-Kocieński, Peterson, and so on.
Collapse
Affiliation(s)
- Nathan Davison
- Chemistry−School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Claire L. McMullin
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Lu Zhang
- School
of Mathematics and Physics, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Shu-Xian Hu
- School
of Mathematics and Physics, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paul G. Waddell
- Chemistry−School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Corinne Wills
- Chemistry−School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Casey Dixon
- Chemistry−School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Erli Lu
- Chemistry−School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| |
Collapse
|
8
|
Lu X, Qin C, Cai J, Zhang M, Yu L, Li J, Wu Q. Study on the selectivity and phloem mobility of Fenoxaprop-P amino acid ester conjugates on rice and barnyard grass. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105086. [PMID: 35430076 DOI: 10.1016/j.pestbp.2022.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
To improve the selectivity of the fenoxaprop herbicide to rice and barnyard grass, a series of fenoxaprop-P-ethyl-amino acid ester conjugates were designed and synthesized, and tested for biological activity as well as their phloem mobility. The bioassay results indicated that the target compounds possessed better activity against barnyard grass (Echinochloa crusgalli) than rape (Brassica campestris L.) at the concentration of 0.5 mmol/L. Compounds 3h and 3i, showed more than 70% control efficiency against barnyard grass, while less than 30% for rape. The compounds showed less impact on rice after spray treatment than in the germination test. Compounds 3i, 3j, and 3k showed excellently herbicidal activities against barnyard grass and low phytotoxicity to rice. Compound 3k showed 6.1% phytotoxicity to rice at a spray concentration of 0.25 mmol/L, better than fenoxaprop-P-ethyl (61.6%) at the same concentration. The selectivity results of the target compounds revealed that most of compounds obviously reduced phytotoxicity to rice while retaining herbicidal activity of barnyard grass. The herbicidal activity of compound 3d compared to FPE was increased by 50%, while its safety on rice was also increased by 50%. The concentration of the compounds in barnyard grass roots was higher than in rice roots, showing greater phloem mobility. In particular, the concentration of compound 3d on barnyard grass exhibited 142.72 mg/kg which was 3 times as much as Fenoxaprop, while its concentration on rice exhibited 3.65 mg/kg, the results revealed that the difference of phloem mobility might be the important reason for causing the selectivity.
Collapse
Affiliation(s)
- Xingliang Lu
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Chuan Qin
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Jinlong Cai
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Min Zhang
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Linhua Yu
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Junkai Li
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China; Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Qinglai Wu
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China; Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China.
| |
Collapse
|
9
|
Kang JY, Huang H. Triflic Anhydride (Tf2O)-Activated Transformations of Amides, Sulfoxides and Phosphorus Oxides via Nucleophilic Trapping. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1679-8205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractTrifluoromethanesulfonic anhydride (Tf2O) is utilized as a strong electrophilic activator in a wide range of applications in synthetic organic chemistry, leading to the transient generation of a triflate intermediate. This versatile triflate intermediate undergoes nucleophilic trapping with diverse nucleophiles to yield novel compounds. In this review, we describe the features and applications of triflic anhydride in organic synthesis reported in the past decade, especially in amide, sulfoxide, and phosphorus oxide chemistry through electrophilic activation. A plausible mechanistic pathway for each important reaction is also discussed.1 Introduction2 Amide Chemistry2.1 Carbon Nucleophiles2.2 Hydrogen Nucleophiles2.3 Nitrogen Nucleophiles2.4 Oxygen and Sulfur Nucleophiles2.5 hosphorus Nucleophiles2.6 A Vilsmeier-Type Reagent2.7 Umpolung Reactivity in Amides3 Sulfoxide Chemistry3.1 Oxygen Nucleophiles3.2 Carbon Nucleophiles3.3 Nitrogen Nucleophiles3.4 Thionium Reagents4 Phosphorus Chemistry4.1 Hendrickson’s Reagent4.2 Diaryl Phosphine Oxides4.3 Phosphonates, Phosphates and Phosphinates5 Conclusion and Outlook
Collapse
Affiliation(s)
- Jun Yong Kang
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University
| |
Collapse
|
10
|
Wang XG, Ou W, Liu MH, Liu ZJ, Huang PQ. Tandem Catalysis Enabled Highly Chemoselective Deoxygenative Alkynylation and Alkylation of Tertiary Amides: A Versatile Entry to Functionalized α-Substituted Amines. Org Chem Front 2022. [DOI: 10.1039/d2qo00335j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the highly chemoseive catalytic reductive alkynylation and reductive alkylation of tertiary amides to give propargylamines and α-branched amines, respectively. The method features a tandem iridium (Vaska’s complex)-catalyzed...
Collapse
|
11
|
Chen J, Lim JW, Ong DY, Chiba S. Iterative addition of carbon nucleophiles to N, N-dialkyl carboxamides for synthesis of α-tertiary amines. Chem Sci 2021; 13:99-104. [PMID: 35059156 PMCID: PMC8694388 DOI: 10.1039/d1sc05876b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
A protocol for the synthesis of α-tertiary amines was developed by iterative addition of carbon nucleophiles to N,N-dialkyl carboxamides. Nucleophilic 1,2-addition of organolithium reagents to carboxamides forms anionic tetrahedral carbinolamine (hemiaminal) intermediates, which are subsequently treated with bromotrimethylsilane (Me3SiBr) followed by organomagnesium (Grignard) reagents, organolithium reagents or tetrabutylammonium cyanide, affording α-tertiary amines. Employment of (trimethylsilyl)methylmagnesium bromide as the 2nd nucleophile allowed for aza-Peterson olefination of the resulting α-tertiary (trimethylsilyl)methylamines with acidic work-up, resulting in the formation of 1,1-diarylethylenes.
Collapse
Affiliation(s)
- Jiahua Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Jun Wei Lim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Derek Yiren Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
12
|
He Q, Ye JL, Xu FF, Geng H, Chen TT, Chen H, Huang PQ. Tf 2O/TTBP (2,4,6-Tri- tert-butylpyrimidine): An Alternative Amide Activation System for the Direct Transformations of Both Tertiary and Secondary Amides. J Org Chem 2021; 86:16300-16314. [PMID: 34499513 DOI: 10.1021/acs.joc.1c01572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ten types of Tf2O/TTBP-mediated amide transformation reactions were investigated. The results showed that compared with pyridine derivatives 2,6-di-tert-butyl-4-methylpyridine (DTBMP) and 2-fluoropyridine (2-F-Pyr.), TTBP can serve as an alternative amide activation system for the direct transformation of both secondary and tertiary amides. For most surveyed examples, higher or comparable yields were generally obtained. In addition, Tf2O/TTBP combination was used to promote the condensation reactions of 2-(tert-butyldimethylsilyloxy)furan (TBSOF) with both tertiary and secondary amides, the one-pot reductive Bischler-Napieralski-type reaction of tertiary lactams, and Movassaghi and Hill's modern version of the Bischler-Napieralski reaction. The value of the Tf2O/TTBP-based methodology was further demonstrated by the concise and high-yielding syntheses of several natural products.
Collapse
Affiliation(s)
- Qian He
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Jian-Liang Ye
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Fang-Fang Xu
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hui Geng
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Ting-Ting Chen
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hang Chen
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
13
|
Li Z, Zhao F, Ou W, Huang P, Wang X. Asymmetric Deoxygenative Alkynylation of Tertiary Amides Enabled by Iridium/Copper Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhaokun Li
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Feng Zhao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Ou
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Pei‐Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
14
|
Zhang C, Guo H, Chen L, Zhang J, Guo M, Zhu X, Shen C, Li Z. One-Pot Synthesis of Symmetrical and Asymmetrical 3-Amino Diynes via Cu(I)-Catalyzed Reaction of Enaminones with Terminal Alkynes. Org Lett 2021; 23:8169-8173. [PMID: 34636564 DOI: 10.1021/acs.orglett.1c02848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An economical and efficient protocol for the direct construction of amino skipped diynes through the Cu(I)-catalyzed reaction of enaminones and terminal alkynes has been described. Different kinds of symmetrical and asymmetrical 3-amino diynes could be obtained in up to 83% yield through a one-pot reaction under mild conditions.
Collapse
Affiliation(s)
- Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Huosheng Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Jiantao Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, P. R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Xuncheng Zhu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Chan Shen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Zeng Li
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| |
Collapse
|
15
|
Li Z, Zhao F, Ou W, Huang PQ, Wang X. Asymmetric Deoxygenative Alkynylation of Tertiary Amides Enabled by Iridium/Copper Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2021; 60:26604-26609. [PMID: 34596947 DOI: 10.1002/anie.202111029] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 12/15/2022]
Abstract
A variety of inert tertiary amides have been successfully transformed into synthetically important chiral propargylamines in high yields with good to excellent enantioselectivities via a relayed sequence of Ir catalyzed partial reduction and Cu/GARPHOS catalyzed asymmetric alkynylation with terminal alkynes. The reaction was readily extended to some drug molecules and the transformations of representative products have been demonstrated, thus attesting the practical utilities and the robust nature of the protocol.
Collapse
Affiliation(s)
- Zhaokun Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Feng Zhao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei Ou
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
16
|
Huang SY, Gao LH, Huang XZ, Huang PQ. Enantioselective Total Syntheses of the Proposed and Revised Structures of Methoxystemofoline: A Stereochemical Revision. J Org Chem 2021; 86:11053-11071. [PMID: 33440938 DOI: 10.1021/acs.joc.0c02667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article describes the full details of our synthetic efforts toward the enantioselective total synthesis of the complex alkaloid methoxystemofoline. The enantioselective construction of the tetracyclic core features: (1) the Keck allylation at the N-α bridgehead carbon to forge the tetrasubstituted stereocenter; (2) an olefin cross-metathesis reaction for the side-chain elongation that is amenable for the synthesis of congeners and analogues; and (3) a regioselective aldol addition reaction with methyl pyruvate that ensured the subsequent regioselective cyclization reaction to construct the fourth ring. Overman's method was employed to install the 5-(alkoxyalky1idene)-3-methyl-tetronate moiety. In the last step, a nonstereoselective reaction resulted in the formation of both the proposed structure of methoxystemofoline and its E-stereoisomer, the natural product (revised structure), in a 1:1 ratio. We suggest to rename the natural product as isomethoxystemofoline, and report for the first time the complete 1H NMR data for this natural product.
Collapse
Affiliation(s)
- Su-Yu Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Long-Hui Gao
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xiong-Zhi Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, PR China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, 345 Lingling Road, Shanghai 200032, PR China
| |
Collapse
|
17
|
Mkrtchyan S, Jakubczyk M, Lanka S, Pittelkow M, Iaroshenko VO. Cu-Catalyzed Arylation of Bromo-Difluoro-Acetamides by Aryl Boronic Acids, Aryl Trialkoxysilanes and Dimethyl-Aryl-Sulfonium Salts: New Entries to Aromatic Amides. Molecules 2021; 26:2957. [PMID: 34065691 PMCID: PMC8156957 DOI: 10.3390/molecules26102957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/28/2022] Open
Abstract
We describe a mechanism-guided discovery of a synthetic methodology that enables the preparation of aromatic amides from 2-bromo-2,2-difluoroacetamides utilizing a copper-catalyzed direct arylation. Readily available and structurally simple aryl precursors such as aryl boronic acids, aryl trialkoxysilanes and dimethyl-aryl-sulfonium salts were used as the source for the aryl substituents. The scope of the reactions was tested, and the reactions were insensitive to the electronic nature of the aryl groups, as both electron-rich and electron-deficient aryls were successfully introduced. A wide range of 2-bromo-2,2-difluoroacetamides as either aliphatic or aromatic secondary or tertiary amides were also reactive under the developed conditions. The described synthetic protocols displayed excellent efficiency and were successfully utilized for the expeditious preparation of diverse aromatic amides in good-to-excellent yields. The reactions were scaled up to gram quantities.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
| | - Michał Jakubczyk
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Suneel Lanka
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Michael Pittelkow
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark;
| | - Viktor O. Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, 00014 Helsinki, Finland
| |
Collapse
|
18
|
Lin Y, He SF, Geng H, Xiao YC, Ji KL, Zheng JF, Huang PQ. Chemoselective Reactions of Isocyanates with Secondary Amides: One-Pot Construction of 2,3-Dialkyl-Substituted Quinazolinones. J Org Chem 2021; 86:5345-5353. [PMID: 33710879 DOI: 10.1021/acs.joc.0c02929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A facile method for the preparation of 2,3-dialkyl-substituted quinazolinones from readily available N-arylamides and commercial isocyanates was developed. This one-pot procedure involves the chemoselective activation of the secondary amide with Tf2O/2-Br-Pyr, the sequential addition of isocyanate, and cyclization. The mild reaction is general for a wide range of substrates and can be run on a gram scale.
Collapse
Affiliation(s)
- Yi Lin
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Shu-Fan He
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hui Geng
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Yu-Chen Xiao
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Kan-Lei Ji
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Jian-Feng Zheng
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China.,State Key Laboratory of Bio-organic and Natural Products Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
19
|
Niu ZJ, Li LH, Li XS, Liu HC, Shi WY, Liang YM. Formation of o-Allyl- and Allenyl-Modified Amides via Intermolecular Claisen Rearrangement. Org Lett 2021; 23:1315-1320. [PMID: 33534590 DOI: 10.1021/acs.orglett.0c04300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We developed a new transition-metal-free intermolecular Claisen rearrangement process to introduce allyl and allenyl groups into the α position of tertiary amides. In this transformation, amides were activated by trifluoromethanesulfonic anhydride to produce the keteniminium ion intermediates that exhibit strong electrophilic activity. This atom-economical process delivers α position-modified amides under mild conditions in moderate to good yields and showcases a broad substrate compatibility.
Collapse
Affiliation(s)
- Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Lian-Hua Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Weng Y, Min L, Zeng X, Shan L, Wang X, Hu Y. General Synthesis of α-Alkyl Ynones from Morpholine Amides and 1-Copper(I) Alkynes Promoted by Triflic Anhydride. Org Lett 2020; 22:8296-8301. [DOI: 10.1021/acs.orglett.0c02944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yunxiang Weng
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Lin Min
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xiaobao Zeng
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Lidong Shan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xinyan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yuefei Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
21
|
Bauer A, Borsos E, Maulide N. A Novel Class of 7-Membered Heterocyclic Compounds. European J Org Chem 2020; 2020:3971-3974. [PMID: 32982576 PMCID: PMC7496137 DOI: 10.1002/ejoc.202000363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 11/08/2022]
Abstract
The work presented herein describes the synthesis of a formerly inaccessible class of heterocyclic compounds. The reaction relies on α‐phthalimido‐amides, which are readily prepared from amino acids in 2 simple reactions steps. Under amide activation conditions in which classical keteniminium ions are not formed, the nitrile solvent is incorporated into the new fused 7‐membered ring system. Due to the absence of a keteniminium intermediate, the stereogenic information in the α‐position is fully retained.
Collapse
Affiliation(s)
- Adriano Bauer
- Institute of Organic Chemistry University of Vienna Währinger Straße 38 1090 Vienna Austria
| | - Eszter Borsos
- Institute of Organic Chemistry University of Vienna Währinger Straße 38 1090 Vienna Austria
| | - Nuno Maulide
- Institute of Organic Chemistry University of Vienna Währinger Straße 38 1090 Vienna Austria
| |
Collapse
|