1
|
Thomas GT, Cruise OD, Peel‐Smith D, Fernández NP, Killeen C, Leitch DC. Easily Accessible and Solution-Stable Ni(0) Precatalysts for High-Throughput Experimentation. Chemistry 2025; 31:e202403960. [PMID: 39822108 PMCID: PMC11855265 DOI: 10.1002/chem.202403960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
We report the synthesis, characterization, and catalytic applications of N,N'-diaryl diazabutadiene (DAB) Ni(0) complexes stabilized by alkene ligands. These complexes are soluble and stable in several organic solvents, making them ideal candidates for in situ catalyst formation during high-throughput experimentation (HTE). We used HTE to evaluate these Ni(0) precatalysts in a variety of Suzuki and C-N coupling reactions, and they were found to have equal or better performance than the still-standard Ni(0) source, Ni(COD)2.
Collapse
Affiliation(s)
- Gilian T. Thomas
- Department of ChemistryUniversity of Victoria3800 Finnerty Rd.VictoriaBC V8P 5 C2Canada
| | - Odhran D. Cruise
- Department of ChemistryUniversity of Victoria3800 Finnerty Rd.VictoriaBC V8P 5 C2Canada
| | - Daelin Peel‐Smith
- Department of ChemistryUniversity of Victoria3800 Finnerty Rd.VictoriaBC V8P 5 C2Canada
| | | | - Charles Killeen
- Department of ChemistryUniversity of Victoria3800 Finnerty Rd.VictoriaBC V8P 5 C2Canada
| | - David C. Leitch
- Department of ChemistryUniversity of Victoria3800 Finnerty Rd.VictoriaBC V8P 5 C2Canada
| |
Collapse
|
2
|
Kania MJ, Reyes A, Neufeldt SR. Oxidative Addition of (Hetero)aryl (Pseudo)halides at Palladium(0): Origin and Significance of Divergent Mechanisms. J Am Chem Soc 2024; 146:19249-19260. [PMID: 38959060 DOI: 10.1021/jacs.4c04496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Two limiting mechanisms are possible for oxidative addition of (hetero)aryl (pseudo)halides at Pd(0): a 3-centered concerted and a nucleophilic displacement mechanism. Until now, there has been little understanding about when each mechanism is relevant. Prior investigations to distinguish between these pathways were limited to a few specific combinations of the substrate and ligand. Here, we computationally evaluated over 180 transition structures for oxidative addition in order to determine mechanistic trends based on substrate, ligand(s), and coordination number. Natural abundance 13C kinetic isotope effects provide experimental results consistent with computational predictions. Key findings include that (1) differences in highest occupied molecular orbital (HOMO) symmetries dictate that, although 12e- PdL is strongly biased toward a 3-centered concerted mechanism, 14e- PdL2 often prefers a nucleophilic displacement mechanism; (2) ligand electronics and sterics, including ligand bite angle, influence the preferred mechanism of the reaction at PdL2; (3) phenyl triflate always reacts through a displacement mechanism regardless of the catalyst structure due to the stability of a triflate anion and the inability of oxygen to effectively donate electron density to Pd; and (4) the high reactivity of C-X bonds adjacent to nitrogen in pyridine substrates relates to stereoelectronic stabilization of a nucleophilic displacement transition state. This work has implications for controlling rate and selectivity in catalytic couplings, and we demonstrate application of the mechanistic insight toward chemodivergent cross-couplings of bromochloroheteroarenes.
Collapse
Affiliation(s)
- Matthew J Kania
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Albert Reyes
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Sharon R Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
3
|
Gu C, So CM. Regio- and Chemoselective Palladium-Catalyzed Additive-Free Direct C─H Functionalization of Heterocycles with Chloroaryl Triflates Using Pyrazole-Alkyl Phosphine Ligands. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309192. [PMID: 38482750 DOI: 10.1002/advs.202309192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Indexed: 06/06/2024]
Abstract
A series of new pyrazole-alkyl phosphine ligands with varying cycloalkyl ring sizes that enable additive-free regio- and chemoselective C─H arylation of heterocycles are reported. Excellent α/β selectivity of various heterocycles such as benzo[b]thiophene, thiophene, furan, benzofuran, and thiazole can be achieved using these ligands, along with excellent chemoselectivity of C─Cl over C─OTf of chloroaryl triflates. Mechanistic studies supported by both experimental findings and density functional theory calculations indicate that the pyrazole phosphine ligands with optimal ring sizes allow the reaction to proceed with a lower energy barrier via a concerted metalation-deprotonation pathway.
Collapse
Affiliation(s)
- Changxue Gu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Chau Ming So
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
4
|
Larson NG, Norman JP, Neufeldt SR. Mechanistic Origin of Ligand Effects on Exhaustive Functionalization During Pd-Catalyzed Cross-Coupling of Dihaloarenes. ACS Catal 2024; 14:7127-7135. [PMID: 38911468 PMCID: PMC11192547 DOI: 10.1021/acscatal.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
We describe a detailed investigation into why bulky ligands-those that enable catalysis at "12e -" Pd0-tend to promote overfunctionalization during Pd-catalyzed cross-couplings of dihalogenated substrates. After one cross-coupling event takes place, PdL initially remains coordinated to the π system of the nascent product. Selectivity for mono- vs. difunctionalization arises from the relative rates of π-decomplexation versus a second oxidative addition. Under the Suzuki coupling conditions in this work, direct dissociation of 12e - PdL from the π-complex cannot outcompete oxidative addition. Instead, Pd must be displaced from the π-complex as 14e - PdL(L') by a second incoming ligand L'. The incoming ligand is another molecule of dichloroarene if the reaction conditions do not include π-coordinating solvents or additives. More overfunctionalization tends to result when increased ligand or substrate sterics raises the energy of the bimolecular transition state for separating 14e - PdL(L') from the mono-cross-coupled product. This work has practical implications for optimizing selectivity in cross-couplings involving multiple halogens. For example, we demonstrate that small coordinating additives like DMSO can largely suppress overfunctionalization and that precatalyst structure can also impact selectivity.
Collapse
Affiliation(s)
- Nathaniel G. Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Jacob P. Norman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Sharon R. Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| |
Collapse
|
5
|
Wang Y, Feng J, Li EQ, Jia Z, Loh TP. Recent advances in ligand-enabled palladium-catalyzed divergent synthesis. Org Biomol Chem 2023; 22:37-54. [PMID: 38050418 DOI: 10.1039/d3ob01679j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Developing efficient and straightforward strategies to rapidly construct structurally distinct and diverse organic molecules is one of the most fundamental tasks in organic synthesis, drug discovery and materials science. In recent years, divergent synthesis of organic functional molecules from the same starting materials has attracted significant attention and has been recognized as an efficient and powerful strategy. To achieve this objective, the proper adjustment of reaction conditions, such as catalysts, solvents, ligands, etc., is required. In this review, we summarized the recent efforts in chemo-, regio- and stereodivergent reactions involving acyclic and cyclic systems catalyzed by palladium complexes. Meanwhile, the reaction types, including carbonylative reactions, coupling reactions and cycloaddition reactions, as well as the probable mechanism have also been highlighted in detail.
Collapse
Affiliation(s)
- Yue Wang
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Jinzan Feng
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| |
Collapse
|
6
|
Jin J, Li C, Wang R, Xia Z, Yan Q, Wang W, Gu S, Wang H, Chen F. Chemodivergent Synthesis of Sulfonamide and Sulfones from N-Tosylhydrazones by Switching Catalyst and Temperature. Org Lett 2023; 25:6012-6017. [PMID: 37555637 DOI: 10.1021/acs.orglett.3c02151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A catalyst- and temperature-controlled selective synthesis of sulfonamide and sulfones from N-tosylhydrazones and MBH carbonates has been developed. The use of palladium catalysts exclusively leads to sulfonamide products at room temperature, whereas the selective synthesis of sulfones is dominant for a temperature-controlled coupling reaction without palladium catalysis. Importantly, the catalyst- or temperature-controlled reaction exhibits high nucleophilicity rather than carbene reactivity in these transformations.
Collapse
Affiliation(s)
- Jingru Jin
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chunyan Li
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Rui Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhimin Xia
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - ShuangXi Gu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Key laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan 430205, China
| | - Haifeng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Key laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan 430205, China
| | - Fener Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
7
|
Wei X, Xue B, Handelmann J, Hu Z, Darmandeh H, Gessner VH, Gooßen LJ. Ylide‐Functionalized Diisopropyl Phosphine (prYPhos): A Ligand for Selective Suzuki‐Miyaura Couplings of Aryl Chlorides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao‐Jing Wei
- Faculty of Chemistry and Biochemistry Ruhr Universität Bochum 44801 Bochum Germany
| | - Bingxiang Xue
- Faculty of Chemistry and Biochemistry Ruhr Universität Bochum 44801 Bochum Germany
| | - Jens Handelmann
- Faculty of Chemistry and Biochemistry Ruhr Universität Bochum 44801 Bochum Germany
| | - Zhiyong Hu
- Faculty of Chemistry and Biochemistry Ruhr Universität Bochum 44801 Bochum Germany
| | - Heidar Darmandeh
- Faculty of Chemistry and Biochemistry Ruhr Universität Bochum 44801 Bochum Germany
| | - Viktoria H. Gessner
- Faculty of Chemistry and Biochemistry Ruhr Universität Bochum 44801 Bochum Germany
| | - Lukas J. Gooßen
- Faculty of Chemistry and Biochemistry Ruhr Universität Bochum 44801 Bochum Germany
| |
Collapse
|
8
|
Norman JP, Larson NG, Entz ED, Neufeldt SR. Unconventional Site Selectivity in Palladium-Catalyzed Cross-Couplings of Dichloroheteroarenes under Ligand-Controlled and Ligand-Free Systems. J Org Chem 2022; 87:7414-7421. [PMID: 35584051 DOI: 10.1021/acs.joc.2c00665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Halides adjacent to nitrogen are conventionally more reactive in Pd-catalyzed cross-couplings of dihalogenated N-heteroarenes. However, a very sterically hindered N-heterocyclic carbene ligand is shown to promote room-temperature cross-coupling at C4 of 2,4-dichloropyridines with high selectivity (∼10:1). This work represents the first highly selective method with a broad scope for C4-coupling of these substrates where selectivity is clearly under ligand control. Under the optimized conditions, diverse substituted 2,4-dichloropyridines and related compounds undergo cross-coupling to form C4-C(sp2) and C4-C(sp3) bonds using organoboron, -zinc, and -magnesium reagents. The synthetic utility of this method is highlighted in multistep syntheses that combine C4-selective cross-coupling with subsequent nucleophilic aromatic substitution reactions. The majority of the products herein (71%) have not been previously reported, emphasizing the ability of this methodology to open up underexplored chemical space. Remarkably, we find that ligand-free "Jeffery" conditions enhance the C4 selectivity of Suzuki coupling by an order of magnitude (>99:1). These ligand-free conditions enable the first C5-selective cross-couplings of 2,5-dichloropyridine and 2,5-dichloropyrimidine.
Collapse
Affiliation(s)
- Jacob P Norman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Nathaniel G Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Emily D Entz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Sharon R Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
9
|
Chen Z, Gu C, Yuen OY, So CM. Palladium-catalyzed chemoselective direct α-arylation of carbonyl compounds with chloroaryl triflates at the C-Cl site. Chem Sci 2022; 13:4762-4769. [PMID: 35655875 PMCID: PMC9067565 DOI: 10.1039/d1sc06701j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/02/2022] [Indexed: 01/13/2023] Open
Abstract
This study described palladium-catalyzed chemoselective direct α-arylation of carbonyl compounds with chloroaryl triflates in the Ar–Cl bond. The Pd/SelectPhos system showed excellent chemoselectivity toward the Ar–Cl bond in the presence of the Ar–OTf bond with a broad substrate scope and excellent product yields. The electronic and steric hindrance offered by the –PR2 group of the ligand with the C2-alkyl group was found to be the key factor affecting the reactivity and chemoselectivity of the α-arylation reaction. The chemodivergent approach was also successfully employed in the synthesis of flurbiprofen and its derivatives (e.g., –OMe and –F). Palladium-catalyzed chemoselective direct α-arylation of carbonyl compounds with chloroaryl triflates in the Ar–Cl bond is reported. The effects of –PR2 and C2-alkyl groups of the ligands are investigated using experimental and computational methods.![]()
Collapse
Affiliation(s)
- Zicong Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| | - Changxue Gu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| | - On Ying Yuen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| | - Chau Ming So
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China .,The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 Guangdong China
| |
Collapse
|
10
|
Ng SS, Chen Z, Yuen OY, So CM. Palladium‐Catalyzed Chemoselective Borylation of (Poly)halogenated Aryl Triflates and Their Application in Consecutive Reactions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shan Shan Ng
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom, Kowloon Hong Kong People's Republic of China
| | - Zicong Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom, Kowloon Hong Kong People's Republic of China
| | - On Ying Yuen
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom, Kowloon Hong Kong People's Republic of China
| | - Chau Ming So
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom, Kowloon Hong Kong People's Republic of China
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518000 People's Republic of China
| |
Collapse
|
11
|
So CM, Yuen OY, Ng SS, Chen Z. General Chemoselective Suzuki–Miyaura Coupling of Polyhalogenated Aryl Triflates Enabled by an Alkyl-Heteroaryl-Based Phosphine Ligand. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chau Ming So
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
| | - On Ying Yuen
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Shan Shan Ng
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zicong Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Abstract
AbstractChemoselective cross-coupling of phenol derivatives is valuable for generating products that retain halides. Here we discuss recent developments in selective cross-couplings of chloroaryl phenol derivatives, with a particular focus on reactions of chloroaryl tosylates. The first example of a C–O-selective Ni-catalyzed Suzuki–Miyaura coupling of chloroaryl tosylates is discussed in detail.1 Introduction2 Density Functional Theory Studies on Oxidative Addition at Nickel(0)3 Stoichiometric Oxidative Addition Studies4 Development of a Tosylate-Selective Suzuki Coupling5 Conclusion and Outlook
Collapse
|
13
|
Reeves EK, Entz ED, Neufeldt SR. Chemodivergence between Electrophiles in Cross-Coupling Reactions. Chemistry 2021; 27:6161-6177. [PMID: 33206420 DOI: 10.1002/chem.202004437] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/14/2022]
Abstract
Chemodivergent cross-couplings are those in which either one of two (or more) potentially reactive functional groups can be made to react based on choice of conditions. In particular, this review focuses on cross-couplings involving two different (pseudo)halides that can compete for the role of the electrophilic coupling partner. The discussion is primarily organized by pairs of electrophiles including chloride vs. triflate, bromide vs. triflate, chloride vs. tosylate, and halide vs. halide. Some common themes emerge regarding the origin of selectivity control. These include catalyst ligation state and solvent polarity or coordinating ability. However, in many cases, further systematic studies will be necessary to deconvolute the influences of metal identity, ligand, solvent, additives, nucleophilic coupling partner, and other factors on chemoselectivity.
Collapse
Affiliation(s)
- Emily K Reeves
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| | - Emily D Entz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| | - Sharon R Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| |
Collapse
|
14
|
Hu Z, Wei XJ, Handelmann J, Seitz AK, Rodstein I, Gessner VH, Gooßen LJ. Coupling of Reformatsky Reagents with Aryl Chlorides Enabled by Ylide-Functionalized Phosphine Ligands. Angew Chem Int Ed Engl 2021; 60:6778-6783. [PMID: 33427381 PMCID: PMC7986804 DOI: 10.1002/anie.202016048] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 12/13/2022]
Abstract
The coupling of aryl chlorides with Reformatsky reagents is a desirable strategy for the construction of α‐aryl esters but has so far been substantially limited in the substrate scope due to many challenges posed by various possible side reactions. This limitation has now been overcome by the tailoring of ylide‐functionalized phosphines to fit the requirements of Negishi couplings. Record‐setting activities were achieved in palladium‐catalyzed arylations of organozinc reagents with aryl electrophiles using a cyclohexyl‐YPhos ligand bearing an ortho‐tolyl‐substituent in the backbone. This highly electron‐rich, bulky ligand enables the use of aryl chlorides in room temperature couplings of Reformatsky reagents. The reaction scope covers diversely functionalized arylacetic and arylpropionic acid derivatives. Aryl bromides and chlorides can be converted selectively over triflate electrophiles, which permits consecutive coupling strategies.
Collapse
Affiliation(s)
- Zhiyong Hu
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Xiao-Jing Wei
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Jens Handelmann
- Chair of Inorganic Chemistry II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Ann-Katrin Seitz
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Ilja Rodstein
- Chair of Inorganic Chemistry II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Viktoria H Gessner
- Chair of Inorganic Chemistry II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Lukas J Gooßen
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| |
Collapse
|
15
|
Boudjelel M, Sadek O, Mallet-Ladeira S, García-Rodeja Y, Sosa Carrizo ED, Miqueu K, Bouhadir G, Bourissou D. Phosphine–Borane Ligands Induce Chemoselective Activation and Catalytic Coupling of Acyl Chlorides at Palladium. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maxime Boudjelel
- Laboratoire Hetérochimie Fondamentale et Appliquée,
UMR 5069, CNRS/Université Paul Sabatier, 118 Route de Narbonne, Toulouse 31062 Cedex 09, France
| | - Omar Sadek
- Laboratoire Hetérochimie Fondamentale et Appliquée,
UMR 5069, CNRS/Université Paul Sabatier, 118 Route de Narbonne, Toulouse 31062 Cedex 09, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse, FR 2599, 118 Route de Narbonne, Toulouse 31062 Cedex 09, France
| | - Yago García-Rodeja
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254, CNRS/Université de Pau et des Pays de l’Adour, E2S UPPA, Hélioparc, 2 Avenue du Président Angot, Pau 64053 Cedex 09, France
| | - E. Daiann Sosa Carrizo
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254, CNRS/Université de Pau et des Pays de l’Adour, E2S UPPA, Hélioparc, 2 Avenue du Président Angot, Pau 64053 Cedex 09, France
| | - Karinne Miqueu
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254, CNRS/Université de Pau et des Pays de l’Adour, E2S UPPA, Hélioparc, 2 Avenue du Président Angot, Pau 64053 Cedex 09, France
| | - Ghenwa Bouhadir
- Laboratoire Hetérochimie Fondamentale et Appliquée,
UMR 5069, CNRS/Université Paul Sabatier, 118 Route de Narbonne, Toulouse 31062 Cedex 09, France
| | - Didier Bourissou
- Laboratoire Hetérochimie Fondamentale et Appliquée,
UMR 5069, CNRS/Université Paul Sabatier, 118 Route de Narbonne, Toulouse 31062 Cedex 09, France
| |
Collapse
|
16
|
Hu Z, Wei X, Handelmann J, Seitz A, Rodstein I, Gessner VH, Gooßen LJ. Kupplung von Reformatsky‐Reagenzien und Arylchloriden ermöglicht durch Ylid‐funktionalisierte Phosphanliganden. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhiyong Hu
- Evonik Lehrstuhl für Organische Chemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Xiao‐Jing Wei
- Evonik Lehrstuhl für Organische Chemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Jens Handelmann
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstaße 150 44801 Bochum Deutschland
| | - Ann‐Katrin Seitz
- Evonik Lehrstuhl für Organische Chemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Ilja Rodstein
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstaße 150 44801 Bochum Deutschland
| | - Viktoria H. Gessner
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstaße 150 44801 Bochum Deutschland
| | - Lukas J. Gooßen
- Evonik Lehrstuhl für Organische Chemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
17
|
Zhou J, Liu D, Bai C, Bao A, Muschin T, Baiyin M, Bao YS. Transient directing group controlled regiodivergent C(sp 3)–H and C(sp 2)–H polyfluoroalkoxylation of aromatic aldehydes. Org Chem Front 2021. [DOI: 10.1039/d1qo00895a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel method for achieving regiodivergent C(sp3)–H and C(sp2)–H polyfluoroalkoxylation in the o-methyl benzaldehyde framework by altering the transient directing group is disclosed.
Collapse
Affiliation(s)
- Jiayu Zhou
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Dan Liu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Chaolumen Bai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Agula Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Tegshi Muschin
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Menghe Baiyin
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Yong-Sheng Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| |
Collapse
|
18
|
Cardoza S, Shrivash MK, Das P, Tandon V. Strategic Advances in Sequential C-Arylations of Heteroarenes. J Org Chem 2020; 86:1330-1356. [PMID: 33356264 DOI: 10.1021/acs.joc.0c02151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sequence-specific C-arylation strategies have important applications in medicinal and material research. These strategies allow C-C bond formations in a regioselective manner to synthesize large molecular libraries for studying structure-activity profiles. The past decade has seen the development of single C-C bond forming reactions using various transition-metal catalysts, cryogenic metalation strategies, and metal-free methods. Sequential arylations of heterocycles allow for the formation of multiaryl derivatives and are a preferred choice over de novo synthetic routes. This perspective sheds light on recent strategic advances to develop various sequential synthetic routes for the multiarylation of heteroarenes. This perspective addresses many challenges in optimizing sequential routes with respect to catalysts, reaction parameters, and various strategies adopted to obtain diversely arylated products.
Collapse
Affiliation(s)
- Savio Cardoza
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manoj Kumar Shrivash
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.,Department of Applied Sciences, Indian Institute of Information Technology, Allahabad 211012, India
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
19
|
Abstract
AbstractThe activation of strong C–O bonds in cross-coupling catalysis can open up new oxygenate-based feedstocks and building blocks for complex-molecule synthesis. Although Ni catalysis has been the major focus for cross-coupling of carboxylate-based electrophiles, we recently demonstrated that palladium catalyzes not only difficult C–O oxidative additions but also Suzuki-type cross-couplings of alkenyl carboxylates under mild conditions. We propose that, depending on the reaction conditions, either a typical Pd(0)/(II) mechanism or a redox-neutral Pd(II)-only mechanism can operate. In the latter pathway, C–C bond formation occurs through carbopalladation of the alkene, and C–O cleavage by β-carboxyl elimination.1 Introduction2 A Mechanistic Challenge: Activating Strong C–O Bonds3 Exploiting Vinylogy for C–Cl and C–O Oxidative Additions4 An Alternative Mechanism for Efficient Cross-Coupling Catalysis5 Conclusions and Outlook
Collapse
|
20
|
O’Byrne SN, Eduful BJ, Willson TM, Drewry DH. Concise, gram-scale synthesis of furo[2,3- b]pyridines with functional handles for chemoselective cross-coupling. Tetrahedron Lett 2020; 61:152353. [PMID: 33012852 PMCID: PMC7526865 DOI: 10.1016/j.tetlet.2020.152353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A concise 4-step synthesis of furo[2,3-b]pyridines, with handles in the 3- and 5-positions for palladium mediated cross-coupling reactions, is described. The synthetic route has been optimized, with only one step requiring purification by column chromatography. The route is amenable to scale-up, and was successfully executed on a multi-gram scale. Furopyridines are of growing interest in medicinal chemistry, and this route should enable easy access to the core for structure-activity relationship (SAR) studies.
Collapse
Affiliation(s)
- Sean N. O’Byrne
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin J. Eduful
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Abstract
An important strategy for the efficient generation of diversity in molecular structures is the utilization of common starting materials in chemodivergent transformations. The most studied solutions for switching the chemoselectivity rely on the catalyst, ligand, additive, solvent, temperature, time, pressure, pH and even small modifications in the substrate. In this review article several processes have been selected such as inter- and intramolecular cyclizations, including carba-, oxa-, thia- and oxazacyclizations promoted mainly by Brønsted or Lewis acids, transition metals and organocatalysts, as well as radical reactions. Catalyst-controlled intra- and intermolecular cyclizations are mainly described to give five- and six-membered rings. Cycloaddition reactions involving (2+2), (3+2), (3+3), (4+1), (4+2), (5+2), (6+2) and (7+2) processes are useful reactions for the synthesis of cyclic systems using organocatalysts, metal catalysts and Lewis acid-controlled processes. Addition reactions mainly of carba- and heteronucleophiles to unsaturated conjugated substrates can give different adducts via metal catalyst-, Lewis acid- and solvent-dependent processes. Carbonylation reactions of amines and phenols are carried out via ligand-controlled transition metal-catalyzed multicomponent processes. Ring-opening reactions starting mainly from cyclopropanols, cyclopropenols and epoxides or aziridines are applied to the synthesis of acyclic versus cyclic products under catalyst-control mainly by Lewis acids. Chemodivergent reduction reactions are performed using dissolving metals, sodium borohydride or hydrogen transfer conditions under solvent control. Oxidation reactions include molecular oxygen under solvent control or using different dioxiranes, as well as chemodivergent palladium catalyzed cross-coupling reactions using boronic acids are applied to aromatic and allenic compounds. Other chemodivergent reactions such as alkylations and allylations under transition metal catalysis, dimerization of acetylenes, bromination of benzylic substrates, and A3-couplings are performed via catalyst- or reaction condition-dependent processes.
Collapse
Affiliation(s)
- Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow University, Leminskie Gory 1, 119992 Moscow, Russia
| | | | | |
Collapse
|
22
|
Entz ED, Russell JEA, Hooker LV, Neufeldt SR. Small Phosphine Ligands Enable Selective Oxidative Addition of Ar-O over Ar-Cl Bonds at Nickel(0). J Am Chem Soc 2020; 142:15454-15463. [PMID: 32805116 PMCID: PMC8082739 DOI: 10.1021/jacs.0c06995] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current methods for Suzuki-Miyaura couplings of nontriflate phenol derivatives are limited by their intolerance of halides including aryl chlorides. This is because Ni(0) and Pd(0) often undergo oxidative addition of organohalides at a similar or faster rate than most Ar-O bonds. DFT and stoichiometric oxidative addition studies demonstrate that small phosphines, in particular PMe3, are unique in promoting preferential reaction of Ni(0) with aryl tosylates and other C-O bonds in the presence of aryl chlorides. This selectivity was exploited in the first Ni-catalyzed C-O-selective Suzuki-Miyaura coupling of chlorinated phenol derivatives where the oxygen-containing leaving group is not a fluorinated sulfonate such as triflate. Computational studies suggest that the origin of divergent selectivity between PMe3 and other phosphines differs from prior examples of ligand-controlled chemodivergent cross-couplings. PMe3 effects selective reaction at tosylate due to both electronic and steric factors. A close interaction between nickel and a sulfonyl oxygen of tosylate during oxidative addition is critical to the observed selectivity.
Collapse
Affiliation(s)
- Emily D. Entz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - John E. A. Russell
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | | | - Sharon R. Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
23
|
Kang K, Huang L, Weix DJ. Sulfonate Versus Sulfonate: Nickel and Palladium Multimetallic Cross-Electrophile Coupling of Aryl Triflates with Aryl Tosylates. J Am Chem Soc 2020; 142:10634-10640. [PMID: 32486635 PMCID: PMC7373434 DOI: 10.1021/jacs.0c04670] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While phenols are frequent and convenient aryl sources in cross-coupling, typically as sulfonate esters, the direct cross-Ullmann coupling of two different sulfonate esters is unknown. We report here a general solution to this challenge catalyzed by a combination of Ni and Pd with Zn reductant and LiBr as an additive. The reaction has broad scope, as demonstrated in 33 examples (65% ± 11% average yield). Mechanistic studies show that Pd strongly prefers the aryl triflate, the Ni catalyst has a small preference for the aryl tosylate, aryl transfer between catalysts is mediated by Zn, and Pd improves yields by consuming arylzinc intermediates.
Collapse
Affiliation(s)
- Kai Kang
- University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|