1
|
Agneswaran R, Mohanakrishnan AK. Synthesis of di/tri-substituted carbazoles involving Pd-mediated Sonogashira coupling of indolyltriflates with aryl acetylenes. Org Biomol Chem 2024; 22:9063-9071. [PMID: 39440595 DOI: 10.1039/d4ob01536c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In this study, we present our preliminary findings on the synthesis of carbazole derivatives involving the Sonogashira coupling reaction of 2-(trimethylamino)methylindolyltriflates with aryl acetylenes followed by isomerization, thermal electrocyclization and 1,3-H shift, furnishing the respective di- and tri-substituted carbazoles.
Collapse
Affiliation(s)
- Rudrasenan Agneswaran
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India.
| | | |
Collapse
|
2
|
Yu H, Nie JJ, Wang ZX. Palladium-catalyzed cross-coupling of arylcarboxylic acid 2-pyridyl esters with terminal alkynes. Org Biomol Chem 2024; 22:8764-8772. [PMID: 39387614 DOI: 10.1039/d4ob01398k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In the presence of Na2CO3, the combination of PdCl2(dppf), dppp and CuI catalyzes the decarbonylative coupling of arylcarboxylic acid 2-pyridyl esters with terminal alkynes to afford 1,2-disubstituted acetylenes. (Hetero)aryl, alkyl, and silylacetylenes and various electron-donating and -withdrawing group-substituted arylcarboxylic acid 2-pyridyl esters can be used in this transformation, with a range of functional groups showing compatibility.
Collapse
Affiliation(s)
- Hang Yu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Jing-Jing Nie
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
3
|
Sun Y, Zhao T, Wang H, Pan Y, Huang L, Feng H. Precision Propargylic Substitution Reaction: Pd-Catalyzed Suzuki-Miyaura Coupling of Nonactivated Propargylamines with Boronic Acids. J Org Chem 2024; 89:13774-13781. [PMID: 39215753 DOI: 10.1021/acs.joc.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Palladium-catalyzed Suzuki-Miyaura cross-coupling is an efficient approach for C-C bond construction. Here we report a deaminative Suzuki-Miyaura reaction to achieve chemo- and regioselectivity in the cross-coupling of nonactivated propargylamines with boronic acids, in which methyl propiolate is introduced to promote the cleavage of the C-N bond to form the C-C bond. This method features a wide range of substrates, good functional group tolerance, and ease of operation, providing an alternative approach to accessing valuable propargylated aromatic compounds.
Collapse
Affiliation(s)
- Yan Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Tao Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Haixiang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ya Pan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
4
|
Cao J, Ding W, Zou G. Tetrabutylammonium Bromide (TBAB)-Promoted, Pd/Cu-Catalyzed Sonogashira Coupling of N-Tosyl Aryltriazenes. Org Lett 2024; 26:4576-4580. [PMID: 38775280 DOI: 10.1021/acs.orglett.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Sonogashira coupling of N-tosyl aryltriazenes is reported to offer arylalkynes in yields up to 92% with the aid of tetrabutylammonium bromide (TBAB) as a dual activator for both the palladium catalyst and aryltriazenes. Common functional groups could be well tolerated, although large electronic effects from alkynes were observed. TBAB-assisted oxidative addition of palladium(0) to aryltriazene instead of in situ formed arylhalide has been proposed to initiate the catalytic cycle.
Collapse
Affiliation(s)
- Jun Cao
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Wenbin Ding
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Gang Zou
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| |
Collapse
|
5
|
Li H, Li S, Hu H, Sun R, Liu M, Ding A, Liu X, Luo W, Fu Z, Guo S, Cai H. Visible-light-induced C(sp 3)-C(sp 3) bond formation via radical/radical cross-coupling. Chem Commun (Camb) 2023; 59:1205-1208. [PMID: 36629273 DOI: 10.1039/d2cc05840e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Radical/radical cross-coupling remains challenging due to diffusion control issues. Herein, we report a visible-light-induced radical/radical cross-coupling reaction of quaternary ammonium salts and Hantzschs via C-N and C-C bond cleavage. The current synthetic approach furnishes 1,2-diphenylethanes in moderate to good yields and provides a method for the construction of the C(sp3)-C(sp3) bond.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Sen Li
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Huimin Hu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Runbo Sun
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Meixia Liu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Anjun Ding
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Xiaoyong Liu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Wenlin Luo
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Zhengjiang Fu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Shengmei Guo
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Hu Cai
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| |
Collapse
|
6
|
Horbaczewskyj CS, Fairlamb IJS. Pd-Catalyzed Cross-Couplings: On the Importance of the Catalyst Quantity Descriptors, mol % and ppm. Org Process Res Dev 2022; 26:2240-2269. [PMID: 36032362 PMCID: PMC9396667 DOI: 10.1021/acs.oprd.2c00051] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/26/2022]
Abstract
![]()
This Review examines parts per million (ppm) palladium
concentrations
in catalytic cross-coupling reactions and their relationship with
mole percentage (mol %). Most studies in catalytic cross-coupling
chemistry have historically focused on the concentration ratio between
(pre)catalyst and the limiting reagent (substrate), expressed as mol
%. Several recent papers have outlined the use of “ppm level”
palladium as an alternative means of describing catalytic cross-coupling
reaction systems. This led us to delve deeper into the literature
to assess whether “ppm level” palladium is a practically
useful descriptor of catalyst quantities in palladium-catalyzed cross-coupling
reactions. Indeed, we conjectured that many reactions could, unknowingly,
have employed low “ppm levels” of palladium (pre)catalyst,
and generally, what would the spread of ppm palladium look like across
a selection of studies reported across the vast array of the cross-coupling
chemistry literature. In a few selected examples, we have examined
other metal catalyst systems for comparison with palladium.
Collapse
Affiliation(s)
| | - Ian J. S. Fairlamb
- University of York, Heslington, York, North Yorkshire, YO10 5DD, United Kingdom
| |
Collapse
|
7
|
Wang QD, Zhang SX, Zhang ZW, Wang Y, Ma M, Chu XQ, Shen ZL. Palladium-Catalyzed Sonogashira Coupling of a Heterocyclic Phosphonium Salt with a Terminal Alkyne. Org Lett 2022; 24:4919-4924. [PMID: 35771670 DOI: 10.1021/acs.orglett.2c01800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Sonogashira coupling of a heterocyclic phosphonium salt with a terminal alkyne via C-P bond cleavage was developed. The reactions proceeded smoothly in the presence of palladium catalyst, copper(I) iodide, and N,N-diisopropylethylamine (DIPEA) in N-methyl-2-pyrrolidone (NMP) at 100 °C for 12 h, producing the corresponding alkynyl-substituted pyridine, quinoline, pyrazine, and quinoxaline in moderate to good yields with wide substrate scope and broad functional group tolerance. In addition, gram-scale synthesis could also be achieved, and the reaction could be applied to the functionalization of alkyne-containing complex molecules derived from sugars and pharmaceutical and naturally occurring products (e.g., estrone, d-galactopyranose, menthol, and ibuprofen).
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Si-Xuan Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhuo-Wen Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Mengtao Ma
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Zhang T, Wang R, Chen J, Liu L, Huang T, Li C, Tang Z, Chen T. Base-promoted direct E-selective olefination of organoammonium salts with sulfones toward stilbenes and conjugated 1,3-dienes. Org Biomol Chem 2022; 20:4369-4375. [PMID: 35575463 DOI: 10.1039/d2ob00716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A base-promoted direct deaminative olefination of organoammonium salts was developed. Only mediated by KOtBu, a series of benzyl and cinnamyl ammonium salts reacted smoothly with sulfones, producing the valuable stilbenes and related 1,3-diene derivatives in good to high yields with good functional group tolerance and excellent E-selectivity. With this developed method, biologically active resveratrol and DMU-212 were also successfully prepared, which further demonstrates the practicality of this reaction.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Runji Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Jiani Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Chunya Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Zhi Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
9
|
Wang Y, Li F, Zeng Q. Advances in Formation of C—X Bonds via Cleavage of C—N Bond of Quaternary Ammonium Salts. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21110536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Synthesis of benzyl thioether derivatives via N-heterocyclic carbene palladium(II)-catalyzed cross coupling of benzylammonium salts with thiophenols. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Zhang T, Wang K, Ke Y, Tang Y, Liu L, Huang T, Li C, Tang Z, Chen T. Transition-metal-free and base promoted C-C bond formation via C-N bond cleavage of organoammonium salts. Org Biomol Chem 2021; 19:8237-8240. [PMID: 34492680 DOI: 10.1039/d1ob01468d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition-metal-free and base promoted C-C bond forming reaction of benzyl C(sp3)-H bond with organoammonium salts via C-N bond cleavage has been reported. Benzyl ammonium salts as well as cinnamyl ammonium salt could couple readily with various benzyl C(sp3)-H species, producing the corresponding products in moderate to excellent yields with good functional group tolerance. Late stage chemical manipulation enabled the specific 1,2-diarylethane structure of products transformed into useful olefin compounds via dehydrogenation, which further demonstrated the utility of this reaction.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Kunyu Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Yuting Ke
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Yuanyuan Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Chunya Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Zhi Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
12
|
Liu T, Wan JP, Liu Y. Metal-free enaminone C-N bond cyanation for the stereoselective synthesis of ( E)- and ( Z)-β-cyano enones. Chem Commun (Camb) 2021; 57:9112-9115. [PMID: 34498638 DOI: 10.1039/d1cc03292e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly practical method for C-CN bond formation by C-N bond cleavage on enaminones leading to the efficient synthesis of β-cyano enones is developed. The reactions take place efficiently to provide (E)-β-cyano enones with only a molecular iodine catalyst. In addition, the additional employment of oxalic acid enables the selective synthesis of (Z)-β-cyano enones.
Collapse
Affiliation(s)
- Ting Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| |
Collapse
|
13
|
Tu Y, Zhao J. Recent Advances in the Pd-Catalyzed Coupling of Arylhydrazines and Ammonium Salts via C-N Bond Cleavage. CHEM REC 2021; 21:3442-3457. [PMID: 34174146 DOI: 10.1002/tcr.202100089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/09/2022]
Abstract
Both arylhydrazines and quaternary ammonium salts are readily accessible or commercially available chemicals that show versatile reactivity in Pd-catalyzed coupling reactions via C-N bond cleavage. A tremendous array of coupling reactions involving reaction partners such as organoborons, aryl silanes, alkenes, alkynes, arylation or alkylation reagents in C-H functionalization and carbonylation reactions are summarized, in which arylhydrazines or quaternary ammonium salts function as aryl or alkyl donors. This account mainly focuses on recent advances in Pd-catalyzed coupling reactions with arylhydrazines or quaternary ammonium salts via C-N bond cleavage, including mechanistic elucidations.
Collapse
Affiliation(s)
- Yongliang Tu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.,Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074, Aachen, Germany
| | - Junfeng Zhao
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| |
Collapse
|
14
|
Liu J, Yang Y, Ouyang K, Zhang WX. Transition-metal-catalyzed transformations of C–N single bonds: Advances in the last five years, challenges and prospects. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
15
|
Yang L, Li S, Zhang Y, Lu J, Deng J, Ma A, Zhang X, Zhang S, Peng J. Palladium Catalyzed Aminocarbonylation of Benzylic Ammonium Triflates with Nitroarenes: Synthesis of Phenylacetamides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Li‐Miao Yang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 People's Republic of China
| | - Shan‐Shan Li
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 People's Republic of China
| | - You‐Ya Zhang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 People's Republic of China
| | - Jin‐Liang Lu
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 People's Republic of China
| | - Jing‐Tong Deng
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 People's Republic of China
| | - Ai‐Jun Ma
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 People's Republic of China
| | - Xiang‐Zhi Zhang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 People's Republic of China
| | - Shu‐Yu Zhang
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs & School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Jin‐Bao Peng
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 People's Republic of China
| |
Collapse
|
16
|
Liu L, Tang Y, Wang K, Huang T, Chen T. Transition-Metal-Free and Base-Promoted Carbon–Heteroatom Bond Formation via C–N Cleavage of Benzyl Ammonium Salts. J Org Chem 2021; 86:4159-4170. [DOI: 10.1021/acs.joc.0c02992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Yuanyuan Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Kunyu Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
17
|
Zhang C, Ma NN, Yu ZL, Shen C, Zhou X, Chu XQ, Rao W, Shen ZL. Palladium-catalyzed direct reductive cross-coupling of aryltrimethylammonium salts with aryl bromides. Org Chem Front 2021. [DOI: 10.1039/d1qo00759a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Palladium-catalyzed direct reductive cross-coupling of aryltrimethylammonium salts with aryl bromides proceeded efficiently in a one-pot manner in the presence of Mg turnings, LiCl, and TMEDA in THF to afford the corresponding biaryl compounds.
Collapse
Affiliation(s)
- Chen Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Na-Na Ma
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zi-Lun Yu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chuanji Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
18
|
Li F, Wang D, Chen H, He Z, Zhou L, Zeng Q. Transition metal-free coupling reactions of benzylic trimethylammonium salts with di(hetero)aryl disulfides and diselenides. Chem Commun (Camb) 2020; 56:13029-13032. [PMID: 33000829 DOI: 10.1039/d0cc05633b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new protocol was developed to synthesize (enantioenriched) thioethers and selenoethers from (chiral) benzylic trimethylammonium salts and di(hetero)aryl disulfides or diselenides. These syntheses were promoted by the presence of weak base and did not require the use of any transition metal, and resulted in the target products with good to excellent yields (72-94%). Using quaternary ammonium salts synthesized from enantiomerically enriched amines led to highly enantiopure benzylic thioethers and selenoethers (94-99% ee) with configurations reversed from those of their enantioenriched quaternary ammonium salts.
Collapse
Affiliation(s)
- Fuhai Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Dan Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Hongyi Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Ze He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Lihong Zhou
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
19
|
Garcı́a-Cárceles J, Bahou KA, Bower JF. Recent Methodologies That Exploit Oxidative Addition of C–N Bonds to Transition Metals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03341] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Karim A. Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - John F. Bower
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
20
|
|
21
|
Liu L, Yu WQ, Huang T, Chen T. Palladium-catalyzed alkynylation of aromatic amines via in situ formed trimethylammonium salts. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Wang ZX, Yang B. Chemical transformations of quaternary ammonium salts via C–N bond cleavage. Org Biomol Chem 2020; 18:1057-1072. [DOI: 10.1039/c9ob02667c] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reaction of quaternary ammonium salts via C–N bond cleavage to construct C–C, C–H and C–heteroatom bonds is summarized.
Collapse
Affiliation(s)
- Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Bo Yang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
23
|
Han C, Zhang Z, Xu S, Wang K, Chen K, Zhao J. Palladium-Catalyzed Hiyama Coupling of Benzylic Ammonium Salts via C–N Bond Cleavage. J Org Chem 2019; 84:16308-16313. [DOI: 10.1021/acs.joc.9b02554] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Chunyu Han
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Zhenming Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Silin Xu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Kai Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Kaiting Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Junfeng Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, P.R. China
| |
Collapse
|