1
|
Da Lama A, Pérez Sestelo J, Sarandeses LA, Martínez MM. Synthesis and Photophysical Properties of β-Alkenyl-Substituted BODIPY Dyes by Indium(III)-Catalyzed Intermolecular Alkyne Hydroarylation. J Org Chem 2024; 89:4702-4711. [PMID: 38502009 PMCID: PMC11002825 DOI: 10.1021/acs.joc.3c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
A new atom-economical synthesis of β-alkenyl-substituted BODIPYs via indium(III)-catalyzed intermolecular alkyne hydroarylation with meso-substituted BODIPYs is described. While catalysis with InI3 allows the double β-functionalization of BODIPY, resulting in regioselectively branched β,β'-disubstituted alkenyl BODIPYs, catalytic InCl3 enables the formation of linear β-substituted alkenyl BODIPYs. Subsequent In(III)-catalyzed intermolecular alkyne hydroarylation allows the synthesis of unsymmetrical push-pull BODIPY derivatives. Therefore, indium catalysis offers complementary regioselectivity in good chemical yields and functional group tolerance. The resulting BODIPY dyes displayed bathochromically shifted absorption and emission according to the electron-nature of the substituents in the alkenyl moiety with high molar extinction coefficients (ε up to 88,200 M-1 cm-1) and quantum yields (0.14-0.96).
Collapse
Affiliation(s)
- Ana Da Lama
- CICA—Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química, Universidade da Coruña, 15071 A Coruña, Spain
| | - José Pérez Sestelo
- CICA—Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química, Universidade da Coruña, 15071 A Coruña, Spain
| | - Luis A. Sarandeses
- CICA—Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química, Universidade da Coruña, 15071 A Coruña, Spain
| | - M. Montserrat Martínez
- CICA—Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
2
|
Kaplan JA, Blum SA. Iodination-Group-Transfer Reactions to Generate Trisubstituted Iodoalkenes with Regio- and Stereochemical Control. J Org Chem 2023; 88:13236-13247. [PMID: 37656489 DOI: 10.1021/acs.joc.3c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The regio- and stereodefined synthesis of trisubstituted alkenes remains a significant synthetic challenge. Herein, a method is developed for producing regio- and stereodefined trisubstituted iodoalkenes by diverting intermediates from an iodination-electrophilic-cyclization mechanism. Specifically, cyclized sulfonium ion-pair intermediates are diverted to alkenes by ring-opening with nucleophilic iodide. Alternatively, scavenging of the iodide by AgOTf prevents ring-opening, enabling isolation of the sulfonium ion-pair intermediate. Isolation of the ion pair enables access to complementary reactivity, including ring-opening by alternative nucleophiles (i.e., amines), yielding trisubstituted acyclic alkenes and an example acyclic tetrasubstituted alkene. X-ray crystallographic determination of reaction intermediates and products confirms that the initial electrophilic-cyclization step sets the stereo- and regiochemistry of the product. The products serve as synthetic building blocks by readily participating in downstream functionalization reactions, including oxidation, palladium-catalyzed cross-coupling, and nucleophilic displacement.
Collapse
Affiliation(s)
- Joseph A Kaplan
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
3
|
Efficient Synthesis of 1 H-Benzo[4,5]imidazo[1,2- c][1,3]oxazin-1-one Derivatives Using Ag 2CO 3/TFA-Catalyzed 6- endo-dig Cyclization: Reaction Scope and Mechanistic Study. Molecules 2023; 28:molecules28052403. [PMID: 36903655 PMCID: PMC10005794 DOI: 10.3390/molecules28052403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
A small library of 1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one derivatives was prepared in good to excellent yields, involving a Ag2CO3/TFA-catalyzed intramolecular oxacyclization of N-Boc-2-alkynylbenzimidazole substrates. In all experiments, the 6-endo-dig cyclization was exclusively achieved since the possible 5-exo-dig heterocycle was not observed, indicating the high regioselectivity of this process. The scope and limitations of the silver catalyzed 6-endo-dig cyclization of N-Boc-2-alkynylbenzimidazoles as substrates, bearing various substituents, were investigated. While ZnCl2 has shown limits for alkynes with an aromatic substituent, Ag2CO3/TFA demonstrated its effectiveness and compatibility regardless of the nature of the starting alkyne (aliphatic, aromatic or heteroaromatic), providing a practical regioselective access to structurally diverse 1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-ones in good yields. Moreover, the rationalization of oxacyclization selectivity in favor of 6-endo-dig over 5-exo-dig was explained by a complementary computational study.
Collapse
|
4
|
Nishimoto Y, Yasuda M. Lewis Acid-mediated Carbon-Fluorine Bond Transformation: Substitution of Fluorine and Insertion into a Carbon-Fluorine Bond. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University
| |
Collapse
|
5
|
Nishimoto Y. Development of Carbometalation and Oxymetalation by Using Moderate Lewis Acidity and π-Electrophilic Affinity of Heavy Main-group Metals. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University
| |
Collapse
|
6
|
Dobler D, Leitner M, Moor N, Reiser O. 2‐Pyrone – A Privileged Heterocycle and Widespread Motif in Nature. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101112] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Daniel Dobler
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Michael Leitner
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Natalija Moor
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Oliver Reiser
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| |
Collapse
|
7
|
Ahmad T, Rasheed T, Hussain M, Rizwan K. Emergence of 2-Pyrone and Its Derivatives, from Synthesis to Biological Perspective: An Overview and Current Status. Top Curr Chem (Cham) 2021; 379:38. [PMID: 34554344 DOI: 10.1007/s41061-021-00350-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
Pyrone moieties are present in natural products and can be synthesized by a diverse range of synthetic methods, resulting in the formation of various derivatives through chemical modifications. Many pyrone-based derivatives are commercially available and are biocompatible. They are building blocks of various intermediates in organic synthesis. They possess remarkable biological properties including antimicrobial, antiviral, cytotoxic, and antitumor activity. These characteristics have made them valuable for the development of drugs. We have summarized recent developments in the synthesis of 2-pyrone and its derivatives and their potential applications. With regard to synthetic approaches, the focus has been on metal-free and transition metal-catalyzed reactions.
Collapse
Affiliation(s)
- Tanveer Ahmad
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Majid Hussain
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| |
Collapse
|
8
|
Khatana AK, Singh V, Gupta MK, Tiwari B. Carbene Catalyzed Access to 3,6‐Disubstituted
α
‐Pyrones via Michael Addition/Lactonization/Elimination Cascade. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Anil Kumar Khatana
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research SGPGIMS-Campus, Raebareli Road Lucknow 226014 India
- Department of Chemistry Central University of Haryana Mahendergarh-123031 Haryana India
| | - Vikram Singh
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research SGPGIMS-Campus, Raebareli Road Lucknow 226014 India
| | - Manoj Kumar Gupta
- Department of Chemistry Central University of Haryana Mahendergarh-123031 Haryana India
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research SGPGIMS-Campus, Raebareli Road Lucknow 226014 India
| |
Collapse
|
9
|
Gao C, Blum SA. Main-group metalated heterocycles through Lewis acid cyclization. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Reddy CR, Patil AD. Iodo- and Chalcogenoannulation of Morita-Baylis-Hillman Alcohols of Propiolaldehydes: Entry to Functionalized 2-Pyrones. Org Lett 2021; 23:4749-4753. [PMID: 34085835 DOI: 10.1021/acs.orglett.1c01466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An efficient intramolecular annulation of Morita-Baylis-Hillman (MBH) alcohols of propiolaldehydes is developed in the presence of ICl or PhSeSePh/PhSSPh-CuCl2. This cyclization offers access to a wide variety of iodinated or chalcogenated 3-(chloromethyl)-2-pyrones in good yields. The chloromethyl group of the obtained 2-pyrones has been easily converted to introduce other handy functionalities, which allowed for further transformations to synthesize diverse 2-pyrone containing molecules.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amol D Patil
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Yata T, Nishimoto Y, Chiba K, Yasuda M. Indium-Catalyzed C-F Bond Transformation through Oxymetalation/β-Fluorine Elimination to Access Fluorinated Isocoumarins. Chemistry 2021; 27:8288-8294. [PMID: 33855750 DOI: 10.1002/chem.202100672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 11/08/2022]
Abstract
Fluorinated heterocycles have attracted much attention in the pharmaceutical and agrochemical industries. Many strategies have already been developed to achieve the synthesis of fluorinated heterocycles. Formidable challenges remain, however, in the synthesis of fluorinated isocoumarin derivatives that are among the most alluring structural motifs. Herein, the indium-catalyzed C-F bond transformation of 2-(2,2-difluorovinyl) benzoates is reported, which are readily accessible compounds, to give a diverse array of fluorinated isocoumarins. The present reaction proceeds smoothly using inexpensive reagents: a catalytic amount of indium salt in the presence of zinc salt. A theoretical calculation of potential energy profiles showed that the reaction consists of oxymetalation with the elimination of alkyl halide and the β-fluorine elimination.
Collapse
Affiliation(s)
- Tetsuji Yata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita, Osaka, 565-0871, Japan
| | - Kouji Chiba
- Material Science Division, MOLSIS Inc., 1-28-38 Shinkawa, Chuo-ku, Tokyo, 104-0033, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Wang YH, Zhang DH, Cao ZH, Li WL, Huang YY. A formal [3 + 3] cycloaddition of allenyl imide and activated ketones for the synthesis of tetrasubstituted 2-pyrones. RSC Adv 2021; 11:8867-8870. [PMID: 35423364 PMCID: PMC8695344 DOI: 10.1039/d0ra10686k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/19/2021] [Indexed: 01/03/2023] Open
Abstract
CsOH·H2O-catalyzed formal [3 + 3] cycloadditions of allenyl imide with β-ketoesters, 1,3-diketones or β-ketonitriles for the synthesis of tetrasubstituted 2-pyrone derivatives have been demonstrated. The allenyl imide was utilized as a C3-synthon, and a ketenyl intermediate was proposed via the process of 1,4-addition of carbon anion to allene followed by elimination of the 2-oxazolidinyl group. CsOH·H2O-catalyzed formal [3 + 3] cycloadditions of allenyl imide with β-ketoesters, 1,3-diketones or β-ketonitriles for the synthesis of tetrasubstituted 2-pyrone derivatives were reported.![]()
Collapse
Affiliation(s)
- Yu-Hao Wang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - De-Hua Zhang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Ze-Hun Cao
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Wang-Lai Li
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Yi-Yong Huang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
13
|
Yan D, Wu Q, Wang D, Tang BZ. Innovative Verfahren zur Synthese von Luminogenen mit aggregationsinduzierter Emission. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong 999077 China
| | - Qian Wu
- Center for AIE Research College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong 999077 China
| | - Dong Wang
- Center for AIE Research College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong 999077 China
| |
Collapse
|
14
|
Yan D, Wu Q, Wang D, Tang BZ. Innovative Synthetic Procedures for Luminogens Showing Aggregation-Induced Emission. Angew Chem Int Ed Engl 2021; 60:15724-15742. [PMID: 32432807 DOI: 10.1002/anie.202006191] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 12/12/2022]
Abstract
As a consequence of their intrinsic advantageous properties, luminogens that show aggregation-induced emission (AIEgens) have received increasing global interest for a wide range of applications. Whereas general synthetic methods towards AIEgens largely rely on tedious procedures and limited reaction types, various innovative synthetic methods have now emerged as complementary, and even alternative, strategies. In this Review, we systematically highlight advancements made in metal-catalyzed functionalization and metal-free-promoted pathways for the construction of AIEgens over the past five years, and briefly illustrate new perspectives in this area. The development of innovative synthetic procedures will enable the facile synthesis of AIEgens with great structural diversity for multifunctional applications.
Collapse
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Qian Wu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
15
|
Okamura T, Koyamada K, Kanazawa J, Miyamoto K, Iwabuchi Y, Uchiyama M, Kanoh N. Synthetic Access to gem-Difluoropropargyl Vinyl Ethers and Their Application to Propargyl Claisen Rearrangement. J Org Chem 2021; 86:1911-1924. [PMID: 33284629 DOI: 10.1021/acs.joc.0c01777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the increasing importance of fluorine to medicinal chemistry and other areas, methods to access various fluorinated compounds are needed. Herein, we report the synthesis of difluoropropargyl vinyl ethers from ketones and aldehydes using difluoropropargyl bromide dicobalt complexes. We applied difluoropropargyl vinyl ethers to the synthesis of difluorodienone or difluoroallene under thermal conditions and trifluoro-pyran under acid-catalyzed conditions.
Collapse
Affiliation(s)
- Toshitaka Okamura
- School of Pharmacy and Pharmaceutical Sciences, and Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kenta Koyamada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junichiro Kanazawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan, and Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Naoki Kanoh
- School of Pharmacy and Pharmaceutical Sciences, and Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
16
|
Dasgupta A, Stefkova K, Babaahmadi R, Gierlichs L, Ariafard A, Melen RL. Triarylborane-Catalyzed Alkenylation Reactions of Aryl Esters with Diazo Compounds. Angew Chem Int Ed Engl 2020; 59:15492-15496. [PMID: 32485034 PMCID: PMC7497215 DOI: 10.1002/anie.202007176] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 11/08/2022]
Abstract
Herein we report a facile, mild reaction protocol to form carbon-carbon bonds in the absence of transition metal catalysts. We demonstrate the metal-free alkenylation reactions of aryl esters with α-diazoesters to give highly functionalized enyne products. Catalytic amounts of tris(pentafluorophenyl)borane (10-20 mol %) are employed to afford the C=C coupled products (31 examples) in good to excellent yields (36-87 %). DFT studies were used to elucidate the mechanism for this alkenylation reaction.
Collapse
Affiliation(s)
- Ayan Dasgupta
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3AT, Cymru/WalesUK
| | - Katarína Stefkova
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3AT, Cymru/WalesUK
| | - Rasool Babaahmadi
- School of Natural Sciences – ChemistryUniversity of TasmaniaPrivate Bag 75Hobart, Tasmania7001Australia
| | - Lukas Gierlichs
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3AT, Cymru/WalesUK
| | - Alireza Ariafard
- School of Natural Sciences – ChemistryUniversity of TasmaniaPrivate Bag 75Hobart, Tasmania7001Australia
| | - Rebecca L. Melen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3AT, Cymru/WalesUK
| |
Collapse
|
17
|
Dasgupta A, Stefkova K, Babaahmadi R, Gierlichs L, Ariafard A, Melen RL. Triarylboran‐katalysierte Alkenylierungen von Arylestern mit Diazoverbindungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ayan Dasgupta
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT, Cymru/Wales UK
| | - Katarína Stefkova
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT, Cymru/Wales UK
| | - Rasool Babaahmadi
- School of Natural Sciences-Chemistry University of Tasmania Private Bag 75 Hobart, Tasmania 7001 Australien
| | - Lukas Gierlichs
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT, Cymru/Wales UK
| | - Alireza Ariafard
- School of Natural Sciences-Chemistry University of Tasmania Private Bag 75 Hobart, Tasmania 7001 Australien
| | - Rebecca L. Melen
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT, Cymru/Wales UK
| |
Collapse
|
18
|
Nishimoto Y, Yasuda M. Carbometalation and Heterometalation of Carbon-Carbon Multiple-Bonds Using Group-13 Heavy Metals: Carbogallation, Carboindation, Heterogallation, and Heteroindation. Chem Asian J 2020; 15:636-650. [PMID: 32011097 PMCID: PMC7155119 DOI: 10.1002/asia.201901730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Organogallium and -indium compounds are useful reagents in organic synthesis because of their moderate stability, efficient reactivity and high chemoselectivity. Carbogallation and -indation of a carbon-carbon multiple bond achieves the simultaneous formation of carbon-carbon and carbon-metal bonds. Heterogallation and -indation construct carbon-heteroatom and carbon-metal bonds. Therefore, these reaction systems represent a significant synthetic method for organogalliums and -indiums. Many chemists have attempted to apply various types of unsaturated compounds such as alkynes, alkenes, and allenes to these reaction systems. This minireview provides an overview of carboindation and -gallation as well as heteroindation and -gallation.
Collapse
Affiliation(s)
- Yoshihiro Nishimoto
- Department of Applied Chemistry Graduate School of EngineeringOsaka University 2-1 Yamadaoka, Suita565-0871OsakaJapan
| | - Makoto Yasuda
- Department of Applied Chemistry Graduate School of EngineeringOsaka University 2-1 Yamadaoka, Suita565-0871OsakaJapan
| |
Collapse
|