1
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 PMCID: PMC12056945 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and EngineeringYamaguchi University2-16-1 TokiwadaiUbeYamaguchi755-8611Japan
| |
Collapse
|
2
|
Lan W, Yu X, Li M, Lei R, Qin Z, Fu B. A concise approach to 2-pyrrolin-5-one scaffold construction from α-halohydroxamates and β-keto compounds. Org Biomol Chem 2023; 21:7535-7540. [PMID: 37674436 DOI: 10.1039/d3ob01140b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A concise approach to the construction of the 2-pyrrolin-5-one scaffold was developed via a one-pot reaction with formal [3 + 2] annulation/elimination between β-keto nitrile/β-keto ester and unsubstituted α-halohydroxamates. This reaction features mild conditions, easy handling, broad substrate scope and good yields. Remarkably, the products could be readily converted into potentially bioactive alkylidenepyrrolinones, pyrroles, pyran-fused pyrrole heterocycles and other useful compounds, exhibiting versatile synthetic potential.
Collapse
Affiliation(s)
- Wenjie Lan
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Xuan Yu
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Mengzhu Li
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Rongchao Lei
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Zhaohai Qin
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Bin Fu
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Kim H, Kim SG. [4 + 2] Annulation of δ-Hydroxy/δ-Sulfonamido-α,β-Unsaturated Ketones with Azlactones for Diastereoselective Synthesis of Highly Substituted 3-Amino-δ-Lactones and 3-Amino-δ-Lactams. J Org Chem 2023; 88:3830-3844. [PMID: 36877789 DOI: 10.1021/acs.joc.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The first base-mediated [4 + 2] annulation of δ-hydroxy-α,β-unsaturated ketones with azlactones has been developed, through which 3,4-disubstituted 3-amino-δ-lactones were obtained in good yields and with excellent diastereoselectivities. This approach was also applied to the [4 + 2] annulation of δ-sulfonamido-α,β-unsaturated ketones, which provided a practical protocol for constructing biologically important 3-amino-δ-lactam frameworks.
Collapse
Affiliation(s)
- Heebum Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Sung-Gon Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| |
Collapse
|
4
|
Bera T, Singh B, Gandon V, Saha J. Experimental and Theoretical Investigation of an Azaoxyallyl Cation‐Templated Intramolecular Aryl Amination Leading to Oxindole Derivatives. Chemistry 2022; 28:e202201208. [DOI: 10.1002/chem.202201208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Tishyasoumya Bera
- Department of Biological and Synthetic Chemistry Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh India
| | - Bandana Singh
- Department of Biological and Synthetic Chemistry Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182, Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
- Laboratoire de Chimie Moléculaire (LCM) CNRS UMR 9168, Ecole Polytechnique Institut Polytechnique de Paris Route de Saclay 91128 Palaiseau cedex France
| | - Jaideep Saha
- Department of Biological and Synthetic Chemistry Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh India
| |
Collapse
|
5
|
Bera T, Singh B, Jana M, Saha J. Access to 3,3'-disubstituted peroxyoxindole derivatives and α-peroxyamides via azaoxyallyl cation-guided addition of hydroperoxides. Chem Commun (Camb) 2022; 58:7538-7541. [PMID: 35703384 DOI: 10.1039/d2cc02378d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a transition metal-free approach for access to 3,3'-disubstituted peroxyoxindole is disclosed, which harnesses a transient azaoxyallyl cation. This strategy is also applicable to the synthesis of structurally diverse α-peroxycarboxylic acid surrogates. The method exhibits good functional group tolerance and is suitable for generating a library of peroxy-containing compounds.
Collapse
Affiliation(s)
- Tishyasoumya Bera
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. .,Department of Chemistry, University of Kalyani, Kalyani-741235, India
| | - Bandana Singh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Manoranjan Jana
- Department of Chemistry, University of Kalyani, Kalyani-741235, India
| | - Jaideep Saha
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
6
|
Xie L, Hu L, Wu P, Zhao Y, Li G, Cui J, Gao Z, Wu L, Nie S. [8 + 3]‐cycloaddition reactions of heptafulvenes or azaheptafulvenes with a‐halohydroxamates. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Xie
- Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 252000 Liao cheng CHINA
| | - Lina Hu
- Liao Cheng University: Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| | - Ping Wu
- Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| | - Yunxu Zhao
- Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| | - Guiling Li
- Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| | - Jichun Cui
- Liaocheng University College of Chemistry and Chemical Engineering No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| | - Zhenzhen Gao
- Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| | - Ligang Wu
- Liaocheng University College of Chemistry and Chemical engineering No. 1, Hunan Road 252000 Liaocheng CHINA
| | - Shaozhen Nie
- Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| |
Collapse
|
7
|
Conceptual design and cost-efficient environmentally Benign synthesis of beta-lactams. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Stereoselective preparation of diverse trans and cis β-lactams following different experimental conditions are executed. A variety of circumstances are critically analyzed. It has been found that the stereochemistry of the products depends on a number of parameters including the conditions of the procedures, composition of the Schiff bases and acid chlorides or equivalents, method of addition of the reactants, temperature of the process and nature of the media. Using some of the compounds and methods as described herein, a number of useful chemical transformations for the preparation of heterocycles are achieved. These methods include indium-catalyzed glycosylation of amino β-lactams, preparation of pyrrole-substituted β-lactams, cycloaddition with sterically congested Schiff bases towards β-lactams, Michael reaction for the preparation of polycyclic oxazepenes and synthesis of two chiral isomers of the thienamycin side chain. Most of the products are obtained stereospecifically and in optically active forms. Many reactions described here are catalytic and therefore, these are environmentally friendly.
Collapse
|
8
|
Lei X, Feng J, Guo Q, Xu C, Shi J. Base-Promoted Formal [3 + 2] Cycloaddition of α-Halohydroxamates with Carbon Disulfide to Synthesize Polysubstituted Rhodanines. Org Lett 2022; 24:2837-2841. [PMID: 35394789 DOI: 10.1021/acs.orglett.2c00736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A concise and practical strategy via potassium-carbonate-mediated [3 + 2]-cycloaddition reaction of α-halohydroxamates with the common solvent carbon disulfide for the synthesis of functionalized rhodanine derivatives in good to excellent yields is developed. The present methodology features a wide substrate scope as well as good functional group tolerance. The potential synthetic utility of this protocol is demonstrated by synthesis of a series of natural product derivatives containing rhodamine skeletons.
Collapse
Affiliation(s)
- Xiaoqiang Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Juan Feng
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
9
|
Hirata G, Shimoharai Y, Shimada T, Nishikata T. Transition metal-free ether coupling and hydroamidation enabling the efficient synthesis of congested heterocycles. Chem Commun (Camb) 2022; 58:3665-3668. [PMID: 35224595 DOI: 10.1039/d1cc06871g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we discovered that α-bromocarboxamides react with alkynols containing tertiary alcohol moieties to produce congested ethers or heterocycles. Here, the etherification and hydroamidation reactions can be controlled by a suitable base. Both C-O and C-N bond formations occurred without a transition-metal catalyst. The stereospecific etherification and cyclization of diastereo-enriched α-bromocarboxamide afforded the corresponding diastereo-enriched ether and heterocyclic compound.
Collapse
Affiliation(s)
- Goki Hirata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Yusuke Shimoharai
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Taisei Shimada
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
10
|
Lan W, Lei R, Luo J, Qin Z, Fu B, Xie L. A Facile Approach to Benzosultam‐fused 4‐Imidazolidinone Derivatives from N‐Sulfonyl Ketimine and α‐Halogenated Hydroxamates. ChemistrySelect 2022. [DOI: 10.1002/slct.202103670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjie Lan
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Rong‐chao Lei
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Jiayu Luo
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Zhaohai Qin
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Bin Fu
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Lei Xie
- School of Pharmacy Liaocheng University Shandong 252000 P. R. China
| |
Collapse
|
11
|
Zhang L, Liu Y, Zhou Y. A Computational Study on Cycloaddition Reactions between Isatin Azomethine Imine and in situ Generated Azaoxyallyl Cation. ChemistrySelect 2022. [DOI: 10.1002/slct.202104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Zhang
- School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Ying Liu
- School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Yongzhu Zhou
- School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
12
|
Biswas S, Duari S, Maity S, Roy A, Elsharif AM, Biswas S. (3 + 2) cycloaddition of 2-alkoxynaphthalenes with azaoxyallyl cations: access to benzo[ e]indolones. Org Biomol Chem 2022; 20:8400-8404. [DOI: 10.1039/d2ob01441f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A route to functionalized benzo[e]indolones has been reported via (3 + 2) cycloaddition of in situ generated azaoxyallyl cations with alkoxynaphthalene followed by aryl C–O bond cleavage. The intermediate adduct has been isolated and characterized.
Collapse
Affiliation(s)
- Subrata Biswas
- Dept. of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata–700 009, West Bengal, India
| | - Surajit Duari
- Dept. of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata–700 009, West Bengal, India
| | - Srabani Maity
- Dept. of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata–700 009, West Bengal, India
| | - Arnab Roy
- Dept. of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata–700 009, West Bengal, India
| | - Asma M. Elsharif
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Srijit Biswas
- Dept. of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata–700 009, West Bengal, India
| |
Collapse
|
13
|
Huang L, Yao Z, Huang G, Ao Y, Zhu B, Li S, Cui X. One‐Pot Synthesis of Fused Indolin‐3‐Ones via a [3+3] Cycloaddition Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lang Huang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Zhenyu Yao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Guanghua Huang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Yaqi Ao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Bin Zhu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Sanshu Li
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| |
Collapse
|
14
|
Lee CY, Kim S. Metal‐free Nucleophilic α‐Azidation of α‐Halohydroxamates with Azidotrimethylsilane. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chang Yoon Lee
- Department of Chemistry Kyonggi University 154-42 Gwanggyosan-ro, Yeongtong-gu Suwon 16227 (Republic of Korea
| | - Sung‐Gon Kim
- Department of Chemistry Kyonggi University 154-42 Gwanggyosan-ro, Yeongtong-gu Suwon 16227 (Republic of Korea
| |
Collapse
|
15
|
Lee CY, Kwon YI, Jang HS, Lee S, Chun YL, Jung J, Kim S. Organocatalytic Enantioselective [4+3]‐Cycloadditions of Azaoxyallyl Cations with 2‐Aminophenyl Enones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chang Yoon Lee
- Department of Chemistry Kyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| | - Yong Il Kwon
- Department of Chemistry Kyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| | - Hyun Sun Jang
- Department of Chemistry Kyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| | - Sumin Lee
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University 26, Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Yoo Lim Chun
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University 26, Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University 26, Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Sung‐Gon Kim
- Department of Chemistry Kyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| |
Collapse
|
16
|
Guo F, Chen J, Huang Y. A Bifunctional N-Heterocyclic Carbene as a Noncovalent Organocatalyst for Enantioselective Aza-Michael Addition Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fangfang Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Jiean Chen
- Shenzhen Bay Laboratory, Shenzhen 518055, People’s Republic of China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
17
|
Leng HJ, Li QZ, Xiang P, Qi T, Dai QS, Jia ZQ, Gou C, Zhang X, Li JL. Diastereoselective [3 + 1] Cyclization Reaction of Oxindolyl Azaoxyallyl Cations with Sulfur Ylides: Assembly of 3,3'-Spiro[β-lactam]-oxindoles. Org Lett 2021; 23:1451-1456. [PMID: 33522815 DOI: 10.1021/acs.orglett.1c00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxindoles and β-lactams are attractive structural motifs because of their unique biological importance. However, the fusion of the two moieties featuring 3,3'-spirocyclic scaffolds is a challenging task in organic synthesis. Herein we designed a novel type of oxindole-based azaoxyallyl cation synthons, which could readily participate in the [3 + 1] cyclization with sulfur ylides. With this protocol, a collection of 3,3-spiro[β-lactam]-oxindoles were facilely produced in up to 94% yield with perfect diastereoselectivity.
Collapse
Affiliation(s)
- Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Peng Xiang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Qing-Song Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Zhi-Qiang Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Chuan Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
18
|
Chen J, Liang E, Shi J, Wu Y, Wen K, Yao X, Tang X. Metal-free synthesis of 1,4-benzodiazepines and quinazolinones from hexafluoroisopropyl 2-aminobenzoates at room temperature. RSC Adv 2021; 11:4966-4970. [PMID: 35424458 PMCID: PMC8694548 DOI: 10.1039/d1ra00324k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/29/2022] Open
Abstract
Herein, we describe the novel reactivity of hexafluoroisopropyl 2-aminobenzoates. The metal-free synthesis of 1,4-benzodiazepines and quinazolinones from hexafluoroisopropyl 2-aminobenzoates has been developed at room temperature. These procedures feature good functional group tolerance, mild reaction conditions, and excellent yields. The newly formed products can readily be converted to other useful N-heterocycles. Moreover, the products and their derivatives showed potent anticancer activities in vitro by MTT assay. A metal-free synthesis of 1,4-benzodiazepines and quinazolinones from hexafluoroisopropyl 2-aminobenzoates has been developed at room temperature.![]()
Collapse
Affiliation(s)
- Jiewen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - En Liang
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Yinrong Wu
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| |
Collapse
|
19
|
Fang QY, Jin HS, Wang RB, Zhao LM. A Role for Isatin Azomethine Imines as a Dipolarophile in Cycloaddition Reactions. Org Lett 2020; 22:7358-7362. [PMID: 32875804 DOI: 10.1021/acs.orglett.0c02705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unusual [2 + 3] cycloaddition of isatin azomethine imines (AIs) and in situ generated azaoxyallyl cations has been developed. It is the first example where AIs serve as the [C,O] 2-atom synthon in organic synthesis. This work not only reveals a new role of isatin AIs in cycloaddition reaction but also provides an efficient access to unprecedented spiroheterocycle compounds.
Collapse
Affiliation(s)
- Qing-Yun Fang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Hai-Shan Jin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Ru-Bing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
20
|
Son EC, Lee J, Kim SG. Base-Promoted Cycloaddition of γ-Hydroxy- and δ-Hydroxy-α,β-Unsaturated Carbonyls with Azaoxyallyl Cations: Rapid Synthesis of N,O
-Heterocycles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Eun Chae Son
- Department of Chemistry; Kyonggi University; 154-42 Gwanggyosan-ro 16227 Yeongtong-gu Suwon Republic of Korea
| | - Jiseon Lee
- Department of Chemistry; Kyonggi University; 154-42 Gwanggyosan-ro 16227 Yeongtong-gu Suwon Republic of Korea
| | - Sung-Gon Kim
- Department of Chemistry; Kyonggi University; 154-42 Gwanggyosan-ro 16227 Yeongtong-gu Suwon Republic of Korea
| |
Collapse
|
21
|
Yuan C, Zhang H, Yuan M, Xie L, Cao X. Synthesis of 1,4-diazepinone derivatives via a domino aza-Michael/S N2 cyclization of 1-azadienes with α-halogenoacetamides. Org Biomol Chem 2020; 18:1082-1086. [PMID: 31971222 DOI: 10.1039/c9ob02626f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel cyclization of α-halogenoacetamides with 1-azadienes has been developed for the efficient preparation of monocyclic 1,4-diazepinones in one step under transition metal-free conditions. Various α-halogenoacetamides and 1-azadienes are well tolerated and give the desired products in good to excellent yields. This cyclization also demonstrates potential synthetic utility on a gram-scale and further transformation.
Collapse
Affiliation(s)
- Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China.
| | - Hui Zhang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China.
| | - Mengna Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China.
| | - Lei Xie
- School of Pharmacy, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
| | - Xiaoqun Cao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China.
| |
Collapse
|
22
|
Králová P, Lemrová B, Maloň M, Soural M. Synthesis of chiral 1,4-oxazepane-5-carboxylic acids from polymer-supported homoserine. RSC Adv 2020; 10:35906-35916. [PMID: 35517075 PMCID: PMC9056997 DOI: 10.1039/d0ra07997a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/02/2022] Open
Abstract
The preparation of novel 1,4-oxazepane-5-carboxylic acids bearing two stereocenters is reported in this article. Fmoc-HSe(TBDMS)-OH immobilized on Wang resin was reacted with different nitrobenzenesulfonyl chlorides and alkylated with 2-bromoacetophenones to yield N-phenacyl nitrobenzenesulfonamides. Their cleavage from the polymer support using trifluoroacetic acid (TFA) led to the removal of the silyl protective group followed by spontaneous lactonization. In contrast, TFA/triethylsilane (Et3SiH)-mediated cleavage yielded 1,4-oxazepane derivatives as a mixture of inseparable diastereomers. The regioselectivity/stereoselectivity depended on the substitution of the starting 2-bromoacetophenones and was studied in detail. Catalytic hydrogenation of the nitro group improved the separability of the resulting diastereomeric anilines, which allowed us to isolate and fully characterize the major isomers. The preparation of novel 1,4-oxazepane-5-carboxylic acids bearing two stereocenters is reported in this article.![]()
Collapse
Affiliation(s)
- Petra Králová
- Department of Organic Chemistry
- Faculty of Science
- Palacký University
- 771 46 Olomouc
- Czech Republic
| | | | - Michal Maloň
- Institute of Molecular and Translational Medicine
- Faculty of Medicine and Dentistry
- Palacký University
- 779 00 Olomouc
- Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry
- Faculty of Science
- Palacký University
- 771 46 Olomouc
- Czech Republic
| |
Collapse
|