1
|
Song N, Xu L, Ding S. Sulfur-Azide Exchange (SuAEx): A Click Reaction for Chemoselective Sulfonate Ester Formation. Org Lett 2025; 27:4921-4926. [PMID: 40331872 DOI: 10.1021/acs.orglett.5c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Here, we report sulfur-azide exchange (SuAEx), which facilitates the efficient synthesis of sulfonate esters via the reaction of sulfonyl azides with phenolic substrates under mild conditions. The reaction tolerates a wide range of functional groups. Notably, SuAEx displays a distinct preference for phenolic hydroxyls over aliphatic alcohols, providing orthogonality critical for complex molecular editing. Its utility is further demonstrated through iterative ligation strategies when combined with azide-alkyne cycloaddition reactions.
Collapse
Affiliation(s)
- Ningning Song
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linlin Xu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Wu D, Jin L, Huang X, Deng H, Shen QK, Quan ZS, Zhang C, Guo HY. Arctigenin: pharmacology, total synthesis, and progress in structure modification. J Enzyme Inhib Med Chem 2022; 37:2452-2477. [PMID: 36093586 PMCID: PMC9481144 DOI: 10.1080/14756366.2022.2115035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arctium lappa L. is a prevalent medicinal herb and a health supplement that is commonly used in Asia. Over the last few decades, the bioactive component arctigenin has attracted the attention of researchers because of its anti-inflammatory, antioxidant, immunomodulatory, multiple sclerosis fighting, antitumor, and anti-leukemia properties. After summarising the research and literature on arctigenin, this study outlines the current status of research on pharmacological activity, total synthesis, and structural modification of arctigenin. The purpose of this study is to assist academics in obtaining a more comprehensive understanding of the research progress on arctigenin and to provide constructive suggestions for further investigation of this useful molecule.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Qing-kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Zhe-shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
3
|
Zhang X, Zhang S, Zhao S, Wang X, Liu B, Xu H. Click Chemistry in Natural Product Modification. Front Chem 2021; 9:774977. [PMID: 34869223 PMCID: PMC8635925 DOI: 10.3389/fchem.2021.774977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Click chemistry is perhaps the most powerful synthetic toolbox that can efficiently access the molecular diversity and unique functions of complex natural products up to now. It enables the ready synthesis of diverse sets of natural product derivatives either for the optimization of their drawbacks or for the construction of natural product-like drug screening libraries. This paper showcases the state-of-the-art development of click chemistry in natural product modification and summarizes the pharmacological activities of the active derivatives as well as the mechanism of action. The aim of this paper is to gain a deep understanding of the fruitful achievements and to provide perspectives, trends, and directions regarding further research in natural product medicinal chemistry.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Songfeng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuan Wang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
4
|
Zhang Y, Chen W, Tan T, Gu Y, Zhang S, Li J, Wang Y, Hou W, Yang G, Ma P, Xu H. Palladium-catalyzed one-pot phosphorylation of phenols mediated by sulfuryl fluoride. Chem Commun (Camb) 2021; 57:4588-4591. [PMID: 33956028 DOI: 10.1039/d1cc00769f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report a general palladium-catalyzed one-pot procedure for the synthesis of phosphonates, phosphinates and phosphine oxides from phenols mediated by sulfuryl fluoride. It features mild conditions, broad substrate scope, high functionality tolerance and water insensitivity. The utility of this procedure has been well demonstrated by gram-scale synthesis, sequential synthesis of click chemistry building blocks, late-stage decoration of drugs and natural products and on-DNA synthesis of phosphine oxide for a DNA-encoded library (DEL).
Collapse
Affiliation(s)
- Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Tan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Hou
- College of Pharmaceutical Science, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
5
|
Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. A Broad‐Spectrum Catalytic Amidation of Sulfonyl Fluorides and Fluorosulfates**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingjie Wei
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Xiaohui Cao
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Guojian Ma
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Zeyuan Liu
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
6
|
Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. A Broad-Spectrum Catalytic Amidation of Sulfonyl Fluorides and Fluorosulfates*. Angew Chem Int Ed Engl 2021; 60:7397-7404. [PMID: 33337566 DOI: 10.1002/anie.202013976] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/30/2020] [Indexed: 12/18/2022]
Abstract
A broad-spectrum, catalytic method has been developed for the synthesis of sulfonamides and sulfamates. With the activation by the combination of a catalytic amount of 1-hydroxybenzotriazole (HOBt) and silicon additives, amidations of sulfonyl fluorides and fluorosulfates proceeded smoothly and excellent yields were generally obtained (87-99 %). Noticeably, this protocol is particularly efficient for sterically hindered substrates. Catalyst loading is generally low and only 0.02 mol % of catalyst is required for the multidecagram-scale synthesis of an amantadine derivative. In addition, the potential of this method in medicinal chemistry has been demonstrated by the synthesis of the marketed drug Fedratinib via a key intermediate sulfonyl fluoride 13. Since a large number of amines are commercially available, this route provides a facile entry to access Fedratinib analogues for biological screening.
Collapse
Affiliation(s)
- Mingjie Wei
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guojian Ma
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zeyuan Liu
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
7
|
Mahapatra S, Woroch CP, Butler TW, Carneiro SN, Kwan SC, Khasnavis SR, Gu J, Dutra JK, Vetelino BC, Bellenger J, Am Ende CW, Ball ND. SuFEx Activation with Ca(NTf 2) 2: A Unified Strategy to Access Sulfamides, Sulfamates, and Sulfonamides from S(VI) Fluorides. Org Lett 2020; 22:4389-4394. [PMID: 32459499 PMCID: PMC7294807 DOI: 10.1021/acs.orglett.0c01397] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method to activate sulfamoyl fluorides, fluorosulfates, and sulfonyl fluorides with calcium triflimide and DABCO for SuFEx with amines is described. The reaction was applied to a diverse set of sulfamides, sulfamates, and sulfonamides at room temperature under mild conditions. Additionally, we highlight this transformation to parallel medicinal chemistry to generate a broad array of nitrogen-based S(VI) compounds.
Collapse
Affiliation(s)
- Subham Mahapatra
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Cristian P Woroch
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Todd W Butler
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sabrina N Carneiro
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Sabrina C Kwan
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Samuel R Khasnavis
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Junha Gu
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Jason K Dutra
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Beth C Vetelino
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Justin Bellenger
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher W Am Ende
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Nicholas D Ball
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| |
Collapse
|
8
|
Xu H, Gu Y, Zhang S, Xiong H, Ma F, Lu F, Ji Q, Liu L, Ma P, Hou W, Yang G, Lerner RA. A Chemistry for Incorporation of Selenium into DNA‐Encoded Libraries. Angew Chem Int Ed Engl 2020; 59:13273-13280. [DOI: 10.1002/anie.202003595] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Wei Hou
- College of Pharmaceutical Science Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
9
|
Xu H, Gu Y, Zhang S, Xiong H, Ma F, Lu F, Ji Q, Liu L, Ma P, Hou W, Yang G, Lerner RA. A Chemistry for Incorporation of Selenium into DNA‐Encoded Libraries. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Wei Hou
- College of Pharmaceutical Science Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
10
|
Xiong H, Gu Y, Zhang S, Lu F, Ji Q, Liu L, Ma P, Yang G, Hou W, Xu H. Iridium-catalyzed C–H amidation of s-tetrazines. Chem Commun (Camb) 2020; 56:4692-4695. [DOI: 10.1039/d0cc01647k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synthesis of ortho-amino substituted s-tetrazines by iridium-catalyzed C–H activation for bioconjugation and DNA-encoded library.
Collapse
Affiliation(s)
- Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
- School of Life Science and Technology
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
- School of Life Science and Technology
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| | - Wei Hou
- College of Pharmaceutical Science, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology
- Hangzhou
- China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies
- ShanghaiTech University
- Shanghai
- China
| |
Collapse
|