1
|
Yedase GS, Murgeshan R, Yatham VR. Minisci C-H Alkylation of Heterocycles with Unactivated Alkyl Iodides Enabled by Visible Light Photocatalysis. J Org Chem 2025; 90:3412-3419. [PMID: 40013461 DOI: 10.1021/acs.joc.4c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
In this work, we developed a general catalytic strategy that allows Minisci C-H alkylation of a variety of heterocycles using unactivated alkyl halide as an alkyl radical source under visible light photocatalysis. Mild reaction conditions, employing 4CzIPN as an organophotocatalyst and aerial oxygen as a green terminal oxidant, a broad scope, good functional group tolerance, and late-stage C-H alkylation of bioactive and pharmaceutically relevant molecules are advantages of the protocol. Preliminary mechanistic studies indicate the involvement of the α-amino alkyl radical and the alkyl radical and further involvement of aerial oxygen under our reaction conditions.
Collapse
Affiliation(s)
- Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Ruveen Murgeshan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
2
|
Cong F, Sun GQ, Ye SH, Hu R, Rao W, Koh MJ. A Bimolecular Homolytic Substitution-Enabled Platform for Multicomponent Cross-Coupling of Unactivated Alkenes. J Am Chem Soc 2024; 146:10274-10280. [PMID: 38568080 DOI: 10.1021/jacs.4c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The construction of C(sp3)-C(sp3) bonds remains one of the most difficult challenges in cross-coupling chemistry. Here, we report a photoredox/nickel dual catalytic approach that enables the simultaneous formation of two C(sp3)-C(sp3) linkages via trimolecular cross-coupling of alkenes with alkyl halides and hypervalent iodine-based reagents. The reaction harnesses a bimolecular homolytic substitution (SH2) mechanism and chemoselective halogen-atom transfer (XAT) to orchestrate the regioselective addition of electrophilic and nucleophilic alkyl radicals across unactivated alkenes without the need for a directing auxiliary. Utility is highlighted through late-stage (fluoro)alkylation and (trideutero)methylation of C═C bonds bearing different substitution patterns, offering straightforward access to drug-like molecules comprising sp3-hybridized carbon scaffolds.
Collapse
Affiliation(s)
- Fei Cong
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Guo-Quan Sun
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Si-Han Ye
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Rui Hu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| |
Collapse
|
3
|
Fang L, Yu J, Yu Z, Tong F, Zhang C, Hu D, Zhang JQ, Ren H. Photoinduced Metal- and Photosensitizer-Free Decarbonylative C-H Alkylation of Cyclic Sulfamidate Imines. J Org Chem 2023. [PMID: 38058173 DOI: 10.1021/acs.joc.3c02088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Photoinduced decarbonylative C-C bond formation with readily accessible aldehydes as alkyl sources is described. This protocol provides a sustainable alternative for the effective construction of diverse valuable 4-alkylated sulfonyl ketimines under metal- and photosensitizer-free conditions. Significantly, in this reaction, air serves as the green oxidant, and cyclic sulfamidate imines play a dual role of substrate and photocatalyst, thus affording a concise reaction system for C-H alkylation of cyclic sulfamidate imines.
Collapse
Affiliation(s)
- Ling Fang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jiawen Yu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Zhiyun Yu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Feifei Tong
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Chun Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
| |
Collapse
|
4
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Xu J, Cai H, Shen J, Shen C, Wu J, Zhang P, Liu X. Photo-Induced Cross-Dehydrogenative Alkylation of Heteroarenes with Alkanes under Aerobic Conditions. J Org Chem 2021; 86:17816-17832. [PMID: 34875167 DOI: 10.1021/acs.joc.1c02125] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a Minisci-type cross-dehydrogenative alkylation in an aerobic atmosphere using abundant and inexpensive cerium chloride as a photocatalyst and air as an oxidant. This photoreaction exhibits excellent tolerance to functional groups and is suitable for both heteroarene and alkane substrates under mild conditions, generating the corresponding products in moderate-to-good yields. Our method provides an alternative approach for the late-stage functionalization of valuable substrates.
Collapse
Affiliation(s)
- Jun Xu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Heng Cai
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Chao Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
6
|
Juliá F, Constantin T, Leonori D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem Rev 2021; 122:2292-2352. [PMID: 34882396 DOI: 10.1021/acs.chemrev.1c00558] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The halogen-atom transfer (XAT) is one of the most important and applied processes for the generation of carbon radicals in synthetic chemistry. In this review, we summarize and highlight the most important aspects associated with XAT and the impact it has had on photochemistry and photocatalysis. The organization of the material starts with the analysis of the most important mechanistic aspects and then follows a subdivision based on the nature of the reagents used in the halogen abstraction. This review aims to provide a general overview of the fundamental concepts and main agents involved in XAT processes with the objective of offering a tool to understand and facilitate the development of new synthetic radical strategies.
Collapse
Affiliation(s)
- Fabio Juliá
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Timothée Constantin
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Abstract
Minisci-type reactions have been widely known as reactions that involve the addition
of carbon-centered radicals to basic heteroarenes followed by formal hydrogen atom loss.
While the originally developed protocols for radical generation remain in active use today, in
recent years, the new array of radical generation strategies have allowed the use of a wider
variety of radical precursors that often operate under milder and more benign conditions. New
transformations based on free radical reactivity are now available to a synthetic chemist, to
utilize a Minisci-type reaction. Radical-generation methods based on photoredox catalysis
and electrochemistry, which utilize thermal cleavage or the in situ generation of reactive radical
precursors, have become popular approaches. Our review will cover the remarkable literature
that has been reported on this topic in recent 5 years, from 2015-01 to 2020-01, in an
attempt to provide guidance to the synthetic chemist on both the challenges that need to be overcome and the applications
in organic synthesis.
Collapse
Affiliation(s)
- Wengui Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Shoufeng Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| |
Collapse
|
8
|
Phosphoric Acid Mediated Light‐Induced Minisci C−H Alkylation of
N
‐Heteroarenes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Dong J, Liu Y, Wang Q. Recent Advances in Visible-Light-Mediated Minisci Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chem Soc Rev 2020; 50:766-897. [PMID: 33350402 DOI: 10.1039/d0cs00493f] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The late stage functionalization (LSF) of complex biorelevant compounds is a powerful tool to speed up the identification of structure-activity relationships (SARs) and to optimize ADME profiles. To this end, visible-light photocatalysis offers unique opportunities to achieve smooth and clean functionalization of drugs by unlocking site-specific reactivities under generally mild reaction conditions. This review offers a critical assessment of current literature, pointing out the recent developments in the field while emphasizing the expected future progress and potential applications. Along with paragraphs discussing the visible-light photocatalytic synthetic protocols so far available for LSF of drugs and drug candidates, useful and readily accessible synoptic tables of such transformations, divided by functional groups, will be provided, thus enabling a useful, fast, and easy reference to them.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Jung S, Shin S, Park S, Hong S. Visible-Light-Driven C4-Selective Alkylation of Pyridinium Derivatives with Alkyl Bromides. J Am Chem Soc 2020; 142:11370-11375. [DOI: 10.1021/jacs.0c04499] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sungwoo Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sanghoon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Seongjin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
12
|
Li T, Liang K, Zhang Y, Hu D, Ma Z, Xia C. Three-Component Minisci Reaction with 1,3-Dicarbonyl Compounds Induced by Visible Light. Org Lett 2020; 22:2386-2390. [DOI: 10.1021/acs.orglett.0c00584] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tao Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology, and Yunnan University Library, Yunnan University, 2 North Cuihu Road, Kunming 650091, China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology, and Yunnan University Library, Yunnan University, 2 North Cuihu Road, Kunming 650091, China
| | - Yang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology, and Yunnan University Library, Yunnan University, 2 North Cuihu Road, Kunming 650091, China
| | - Dongyan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology, and Yunnan University Library, Yunnan University, 2 North Cuihu Road, Kunming 650091, China
| | - Zhixian Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology, and Yunnan University Library, Yunnan University, 2 North Cuihu Road, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology, and Yunnan University Library, Yunnan University, 2 North Cuihu Road, Kunming 650091, China
| |
Collapse
|
13
|
Yu Y, Lv H, Li S. The C-H functionalization of organic cations: an interesting and fresh journey. Org Biomol Chem 2020; 18:8810-8826. [PMID: 33112319 DOI: 10.1039/d0ob01453b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic ionic compounds, especially those with organic cations, are commonly applied in ionic liquids (ILs), organocatalysts, (a)NHC ligands, ion recognition, and optoelectronic materials. The direct C-H functionalization of organic cations offers valuable opportunities for the rapid assembly of diverse functionalized cations and for their further exploitation in material science applications. This review summarizes the substantial progress that has been made in the C-H functionalization of organic cations from the 1960s to May 2020, including transition metal-mediated/catalyzed C-H alkylation, arylation, and annulation, and photo-induced C-H functionalization. Substrate scopes, limitations, regio-/chemoselectivity, and reaction mechanisms are discussed. In addition, the applications of some new organic functional materials are briefly exemplified. This review also aims to serve as a reminder that much care should be taken when using organic ionic compounds as solvents, because they can behave as reactants that can break up desired coupling reactions.
Collapse
Affiliation(s)
- Yu Yu
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | | | | |
Collapse
|