1
|
Streit JO, Chan SHS, Daya S, Christodoulou J. Rational design of 19F NMR labelling sites to probe protein structure and interactions. Nat Commun 2025; 16:4300. [PMID: 40341366 PMCID: PMC12062419 DOI: 10.1038/s41467-025-59105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025] Open
Abstract
Proteins are investigated in increasingly more complex biological systems, where 19F NMR is proving highly advantageous due to its high gyromagnetic ratio and background-free spectra. Its application has, however, been hindered by limited chemical shift dispersions and an incomprehensive relationship between chemical shifts and protein structure. Here, we exploit the sensitivity of 19F chemical shifts to ring currents by designing labels with direct contact to a native or engineered aromatic ring. Fifty protein variants predicted by AlphaFold and molecular dynamics simulations show 80-90% success rates and direct correlations of their experimental chemical shifts with the magnitude of the engineered ring current. Our method consequently improves the chemical shift dispersion and through simple 1D experiments enables structural analyses of alternative conformational states, including ribosome-bound folding intermediates, and in-cell measurements of protein-protein interactions and thermodynamics. Our strategy thus provides a simple and sensitive tool to extract residue contact restraints from chemical shifts for previously intractable systems.
Collapse
Affiliation(s)
- Julian O Streit
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| | - Saifu Daya
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| |
Collapse
|
2
|
Toscano G, Rosati M, Barbieri L, Maier K, Banci L, Luchinat E, Konrat R, Lichtenecker RJ. The synthesis of specifically isotope labelled fluorotryptophan and its use in mammalian cell-based protein expression for 19F-NMR applications. Chem Commun (Camb) 2024; 60:14188-14191. [PMID: 39512115 DOI: 10.1039/d4cc04789c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
19F nuclei serve as versatile sensors for detecting protein interactions and dynamics in biomolecular NMR spectroscopy. Although various methods have been developed to incorporate fluorine-containing aromatic residues into proteins using E. coli or cell-free expression techniques, similar approaches for protein production in mammalian cell lines remain limited. Here, we present a cost-effective synthetic route to obtain selectively deuterated, carbon-13 labeled fluorotryptophan and demonstrate its use in introducing 19F-13C spin pairs into carbonic anhydrase 2 and superoxide dismutase, following an expression protocol utilizing HEK cells.
Collapse
Affiliation(s)
- Giorgia Toscano
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Martina Rosati
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Letizia Barbieri
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
| | - Katharina Maier
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
| | - Lucia Banci
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Enrico Luchinat
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Robert Konrat
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, 1030-Vienna, Austria
- Mag-Lab, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| | - Roman J Lichtenecker
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Mag-Lab, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| |
Collapse
|
3
|
Runge BR, Zadorozhnyi R, Quinn CM, Russell RW, Lu M, Antolínez S, Struppe J, Schwieters CD, Byeon IJL, Hadden-Perilla JA, Gronenborn AM, Polenova T. Integrating 19F Distance Restraints for Accurate Protein Structure Determination by Magic Angle Spinning NMR Spectroscopy. J Am Chem Soc 2024; 146:30483-30494. [PMID: 39440810 DOI: 10.1021/jacs.4c11373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Traditional protein structure determination by magic angle spinning (MAS) solid-state NMR spectroscopy primarily relies on interatomic distances up to 8 Å, extracted from 13C-, 15N-, and 1H-based dipolar-based correlation experiments. Here, we show that 19F fast (60 kHz) MAS NMR spectroscopy can supply additional, longer distances. Using 4F-Trp,U-13C,15N crystalline Oscillatoria agardhii agglutinin (OAA), we demonstrate that judiciously designed 2D and 3D 19F-based dipolar correlation experiments such as (H)CF, (H)CHF, and FF can yield interatomic distances in the 8-16 Å range. Incorporation of fluorine-based restraints into structure calculation improved the precision of Trp side chain conformations as well as regions in the protein around the fluorine containing residues, with notable improvements observed for residues in proximity to the Trp pairs (W10/W17 and W77/W84) in the carbohydrate-binding loops, which lacked sufficient long-range 13C-13C distance restraints. Our work highlights the use of fluorine and 19F fast MAS NMR spectroscopy as a powerful structural biology tool.
Collapse
Affiliation(s)
- Brent R Runge
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Roman Zadorozhnyi
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Caitlin M Quinn
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
| | - Ryan W Russell
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Manman Lu
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Santiago Antolínez
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Charles D Schwieters
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 12A, Bethesda, Maryland 20892, United States
| | - In-Ja L Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Jodi A Hadden-Perilla
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
4
|
Wehrhan L, Keller BG. Fluorinated Protein-Ligand Complexes: A Computational Perspective. J Phys Chem B 2024; 128:5925-5934. [PMID: 38886167 PMCID: PMC11215785 DOI: 10.1021/acs.jpcb.4c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Fluorine is an element renowned for its unique properties. Its powerful capability to modulate molecular properties makes it an attractive substituent for protein binding ligands; however, the rational design of fluorination can be challenging with effects on interactions and binding energies being difficult to predict. In this Perspective, we highlight how computational methods help us to understand the role of fluorine in protein-ligand binding with a focus on molecular simulation. We underline the importance of an accurate force field, present fluoride channels as a showcase for biomolecular interactions with fluorine, and discuss fluorine specific interactions like the ability to form hydrogen bonds and interactions with aryl groups. We put special emphasis on the disruption of water networks and entropic effects.
Collapse
Affiliation(s)
- Leon Wehrhan
- Department of Chemistry,
Biology and Pharmacy, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Bettina G. Keller
- Department of Chemistry,
Biology and Pharmacy, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
5
|
Zadorozhnyi R, Gronenborn AM, Polenova T. Integrative approaches for characterizing protein dynamics: NMR, CryoEM, and computer simulations. Curr Opin Struct Biol 2024; 84:102736. [PMID: 38048753 PMCID: PMC10922663 DOI: 10.1016/j.sbi.2023.102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/07/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
Proteins are inherently dynamic and their internal motions are essential for biological function. Protein motions cover a broad range of timescales: 10-14-10 s, spanning from sub-picosecond vibrational motions of atoms via microsecond loop conformational rearrangements to millisecond large amplitude domain reorientations. Observing protein dynamics over all timescales and connecting motions and structure to biological mechanisms requires integration of multiple experimental and computational techniques. This review reports on state-of-the-art approaches for assessing dynamics in biological systems using recent examples of virus assemblies, enzymes, and molecular machines. By integrating NMR spectroscopy in solution and the solid state, cryo electron microscopy, and molecular dynamics simulations, atomistic pictures of protein motions are obtained, not accessible from any single method in isolation. This information provides fundamental insights into protein behavior that can guide the development of future therapeutics.
Collapse
Affiliation(s)
- Roman Zadorozhnyi
- University of Delaware, Department of Chemistry and Biochemistry, Newark DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh PA, United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh PA, United States; Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh PA, United States.
| |
Collapse
|
6
|
Antolínez S, Jones PE, Phillips JC, Hadden-Perilla JA. AMBERff at Scale: Multimillion-Atom Simulations with AMBER Force Fields in NAMD. J Chem Inf Model 2024; 64:543-554. [PMID: 38176097 PMCID: PMC10806814 DOI: 10.1021/acs.jcim.3c01648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
All-atom molecular dynamics (MD) simulations are an essential structural biology technique with increasing application to multimillion-atom systems, including viruses and cellular machinery. Classical MD simulations rely on parameter sets, such as the AMBER family of force fields (AMBERff), to accurately describe molecular motion. Here, we present an implementation of AMBERff for use in NAMD that overcomes previous limitations to enable high-performance, massively parallel simulations encompassing up to two billion atoms. Single-point potential energy comparisons and case studies on model systems demonstrate that the implementation produces results that are as accurate as running AMBERff in its native engine.
Collapse
Affiliation(s)
- Santiago Antolínez
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Peter Eugene Jones
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - James C. Phillips
- National
Center for Supercomputing Applications, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jodi A. Hadden-Perilla
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
7
|
Theoretical studies of metal-organic frameworks: Calculation methods and applications in catalysis, gas separation, and energy storage. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Engineering of enzymes using non-natural amino acids. Biosci Rep 2022; 42:231590. [PMID: 35856922 PMCID: PMC9366748 DOI: 10.1042/bsr20220168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
In enzyme engineering, the main targets for enhancing properties are enzyme activity, stereoselective specificity, stability, substrate range, and the development of unique functions. With the advent of genetic code extension technology, non-natural amino acids (nnAAs) are able to be incorporated into proteins in a site-specific or residue-specific manner, which breaks the limit of 20 natural amino acids for protein engineering. Benefitting from this approach, numerous enzymes have been engineered with nnAAs for improved properties or extended functionality. In this review, we focus on applications and strategies for using nnAAs in enzyme engineering. Notably, approaches to computational modelling of enzymes with nnAAs are also addressed. Finally, we discuss the bottlenecks that currently need to be addressed in order to realise the broader prospects of this genetic code extension technique.
Collapse
|