1
|
Garg M, Guo H, Maclam E, Zhanov E, Samudrala S, Pavlov A, Rahman MS, Namkoong M, Moreno JP, Tian L. Molecularly Imprinted Wearable Sensor with Paper Microfluidics for Real-Time Sweat Biomarker Analysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46113-46122. [PMID: 39178237 PMCID: PMC11378148 DOI: 10.1021/acsami.4c10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The urgent need for real-time and noninvasive monitoring of health-associated biochemical parameters has motivated the development of wearable sweat sensors. Existing electrochemical sensors show promise in real-time analysis of various chemical biomarkers. These sensors often rely on labels and redox probes to generate and amplify the signals for the detection and quantification of analytes with limited sensitivity. In this study, we introduce a molecularly imprinted polymer (MIP)-based biochemical sensor to quantify a molecular biomarker in sweat using electrochemical impedance spectroscopy, which eliminates the need for labels or redox probes. The molecularly imprinted biosensor can achieve sensitive and specific detection of cortisol at concentrations as low as 1 pM, 1000-fold lower than previously reported MIP cortisol sensors. We integrated multimodal electrochemical sensors with an iontophoresis sweat extraction module and paper microfluidics for real-time sweat analysis. Several parameters can be simultaneously quantified, including sweat volume, secretion rate, sodium ion, and cortisol concentration. Paper microfluidic modules not only quantify sweat volume and secretion rate but also facilitate continuous sweat analysis without user intervention. While we focus on cortisol sensing as a proof-of-concept, the molecularly imprinted wearable sensors can be extended to real-time detection of other biochemicals, such as protein biomarkers and therapeutic drugs.
Collapse
Affiliation(s)
- Mayank Garg
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Heng Guo
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Ethan Maclam
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Elizabeth Zhanov
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Sathwika Samudrala
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Anton Pavlov
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Md Saifur Rahman
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Myeong Namkoong
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Jennette P Moreno
- Department of Pediatrics-Nutrition, Baylor College of Medicine, Houston 77030, Texas, United States
| | - Limei Tian
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station 77843, Texas, United States
| |
Collapse
|
2
|
Mizera A, Zięba S, Bielejewski M, Dubis AT, Łapiński A. Effect of hydrostatic pressure on charge carriers in a conducting pyrrole- co-poly(pyrrole-3-carboxylic) copolymer. Phys Chem Chem Phys 2024; 26:18962-18969. [PMID: 38952289 DOI: 10.1039/d4cp01087f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The charge carriers in conducting pyrrole-co-poly(pyrrole-3-carboxylic) were examined using high-pressure Raman spectroscopy. The molecular structure of the new copolymer was investigated using high-resolution 13C ssNMR, 1H-13C 2D NMR correlation spectroscopy, and density functional theory (DFT) calculations. Bands in Raman spectra that showed the presence of polarons and bipolarons were studied. It was observed that the quantity of polarons and bipolarons correlated with the hydrostatic pressure. At a pressure of 4 GPa, an anomaly in the correlation between pressure and the position of the Raman band was identified.
Collapse
Affiliation(s)
- Adam Mizera
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179, Poznań, Poland.
| | - Sylwia Zięba
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179, Poznań, Poland.
| | - Michał Bielejewski
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179, Poznań, Poland.
| | - Alina T Dubis
- Department of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245, Białystok, Poland
| | - Andrzej Łapiński
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179, Poznań, Poland.
| |
Collapse
|
3
|
Minisy IM, Taboubi O, Hromádková J, Bober P. Aerogels of Polypyrrole/Tannic Acid with Nanofibrillated Cellulose for the Removal of Hexavalent Chromium Ions. Gels 2024; 10:415. [PMID: 39057439 PMCID: PMC11275629 DOI: 10.3390/gels10070415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The preparation of conducting polymer aerogels is an effective strategy to produce innovative materials with enhanced physicochemical properties. Herein, polypyrrole (PPy) aerogels were oxidatively prepared in the presence of tannic acid (TA) with different concentrations (2.5, 5, and 10% mole ratio to pyrrole monomer) under freezing conditions. Nanofibrillated cellulose (NFC) was added during the PPy/TA synthesis to enhance mechanical stability. The effect of TA concentration on the aerogels' morphology, conductivity, thermal stability, and adsorption capacity was investigated. The conductivity of 9.6 ± 1.7 S cm-1 was achieved for PPy/TA prepared with 2.5% TA, which decreased to 0.07 ± 0.01 S cm-1 when 10% TA was used. PPy/TA aerogels have shown high efficacy in removing Cr(VI) ions from aqueous solutions. Adsorption experiments revealed that all the aerogels follow pseudo-second-order kinetics. PPy/TA prepared with NFC has a maximum adsorption capacity of 549.5 mg g-1.
Collapse
Affiliation(s)
- Islam M. Minisy
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | | | | | | |
Collapse
|
4
|
Matsui K, Yamamoto K, Oyama K, Seike M, Takeuchi K, Funatsu T, Mitamura K, Ikeda S, Watase S, Hirai T, Nakamura Y, Fujii S. Nitrogen-Containing Carbon Tubes Fabricated by Light Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6272-6284. [PMID: 38483293 DOI: 10.1021/acs.langmuir.3c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Cotton-core/polypyrrole (PPy)-sheath fibers (cotton/PPy fibers) were synthesized by aqueous chemical oxidative seeded polymerization and were utilized as precursors for nitrogen-containing carbon (NCC) tubes. Irradiation of the cotton/PPy fibers with a near-infrared (NIR) laser heated them to approximately 300 °C due to light-to-heat photothermal conversion by the PPy, and the cotton core was thermally decomposed and vaporized. Scanning electron microscopy studies revealed the formation of tubes with monodispersed diameters, and elemental microanalysis, Fourier transform infrared spectroscopy, and Raman spectroscopy confirmed that the PPy sheath was converted into NCC. Furthermore, sunlight also worked as the light source in fabricating the NCC tubes. The thicknesses of the tubes were controlled between 410 nm and 2.30 μm by tuning the PPy sheath thickness. The method developed in this study can be extended to other polymeric fibers, including acrylic and wool fibers. The shapes of the cross sections and surface nanomorphologies of the NCC tubes can be reflected in those of the polymer/PPy fibers.
Collapse
Affiliation(s)
- Kanade Matsui
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Kenshin Yamamoto
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Keigo Oyama
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Kazusa Takeuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Takahiro Funatsu
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Research Laboratory of Advanced Science & Technology, Asahi Kasei Corporation, 1-3-1 Yakoh, Kawasaki-ku, Kawasaki-city, Kanagawa 210-0863, Japan
| | - Koji Mitamura
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Shingo Ikeda
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Seiji Watase
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Tomoyasu Hirai
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
5
|
Jurča M, Vilčáková J, Kazantseva NE, Munteanu A, Munteanu L, Sedlačík M, Stejskal J, Trchová M, Prokeš J. Conducting and Magnetic Hybrid Polypyrrole/Nickel Composites and Their Application in Magnetorheology. MATERIALS (BASEL, SWITZERLAND) 2023; 17:151. [PMID: 38204007 PMCID: PMC10780277 DOI: 10.3390/ma17010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Hybrid organic/inorganic conducting and magnetic composites of core-shell type have been prepared by in-situ coating of nickel microparticles with polypyrrole. Three series of syntheses have been made. In the first, pyrrole was oxidised with ammonium peroxydisulfate in water in the presence of various amounts of nickel and the composites contained up to 83 wt% of this metal. The second series used 0.1 M sulfuric acid as a reaction medium. Finally, the composites with polypyrrole nanotubes were prepared in water in the presence of structure-guiding methyl orange dye. The nanotubes have always been accompanied by the globular morphology. FTIR and Raman spectroscopies confirmed the formation of polypyrrole. The resistivity of composite powders of the order of tens to hundreds Ω cm was monitored as a function of pressure up to 10 MPa. The resistivity of composites slightly increased with increasing content of nickel. This apparent paradox is explained by the coating of nickel particles with polypyrrole, which prevents their contact and subsequent generation of metallic conducting pathways. Electrical properties were practically independent of the way of composite preparation or nickel content and were controlled by the polypyrrole phase. On the contrary, magnetic properties were determined exclusively by nickel content. The composites were used as a solid phase to prepare a magnetorheological fluid. The test showed better performance when compared with a different nickel system reported earlier.
Collapse
Affiliation(s)
- Marek Jurča
- University Institute, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; (M.J.); (J.V.); (N.E.K.); (A.M.); (L.M.); (M.S.)
| | - Jarmila Vilčáková
- University Institute, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; (M.J.); (J.V.); (N.E.K.); (A.M.); (L.M.); (M.S.)
| | - Natalia E. Kazantseva
- University Institute, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; (M.J.); (J.V.); (N.E.K.); (A.M.); (L.M.); (M.S.)
| | - Andrei Munteanu
- University Institute, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; (M.J.); (J.V.); (N.E.K.); (A.M.); (L.M.); (M.S.)
| | - Lenka Munteanu
- University Institute, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; (M.J.); (J.V.); (N.E.K.); (A.M.); (L.M.); (M.S.)
| | - Michal Sedlačík
- University Institute, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; (M.J.); (J.V.); (N.E.K.); (A.M.); (L.M.); (M.S.)
| | - Jaroslav Stejskal
- University Institute, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic; (M.J.); (J.V.); (N.E.K.); (A.M.); (L.M.); (M.S.)
- University of Chemistry and Technology, 166 28 Prague, Czech Republic;
| | - Miroslava Trchová
- University of Chemistry and Technology, 166 28 Prague, Czech Republic;
| | - Jan Prokeš
- Faculty of Mathematics and Physics, Charles University, 180 00 Prague, Czech Republic;
| |
Collapse
|
6
|
Samwang T, Watanabe NM, Okamoto Y, Srinives S, Umakoshi H. Study of Chemical Polymerization of Polypyrrole with SDS Soft Template: Physical, Chemical, and Electrical Properties. ACS OMEGA 2023; 8:48946-48957. [PMID: 38162777 PMCID: PMC10753705 DOI: 10.1021/acsomega.3c06511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
Polypyrrole (PPy) is a conductive polymer known for its biocompatibility and ease of synthesis. Chemically polymerized PPy was synthesized in the presence of sodium dodecyl sulfate (SDS), showing correlations among chemical properties, physical morphology, and electrical properties. Focused synthesis parameters included the pyrrole (Py) concentration, SDS concentration, and ammonium persulfate (APS)/Py ratio. The addition of SDS during chemical polymerization influenced the physical morphology of PPy by altering the self-assembling process via micelle formation, yielding sheet-like morphologies. However, the phenomenon also relied heavily on other synthesis parameters. Varying SDS concentrations within the 0.01 to 0.30 M window produced PPy sheets with no significant difference in optical band gap or physical size. While using 0.10 M SDS, an increase in Py concentration from 0.10 to 0.30 M yielded a larger size of PPy as the morphology changed from sheet-like to irregular shape. The band gap dropped from 2.35 to 1.10 eV, and the conductivity rose from 6.80 × 10-1 to 9.40 × 10-1 S/m. With an increase in the APS/Py ratio, the PPy product changed from a random to a sheet-like form. The product provided a larger average size, a decreased band gap, and increased electrical conductivity. Py polymerization in the absence of SDS revealed no significant change in shape or size as the Py concentration increased from 0.10 to 0.30 M; only a sphere-like form was observed, with a large band gap and small conductivity. Results from Raman spectral analysis indicated a correlation between optical band gap, physical morphology, and bipolaron/polaron ratio, mainly at the wavelengths associated with C-C stretching and C-H deformation. The increase in average size was associated with a decrease in band gap and resistance as well as an increase in the bipolaron/polaron ratio. This work indicates a strong correlation between size, morphology, electrical properties, and the bipolaron/polaron ratio of PPy in the presence of SDS.
Collapse
Affiliation(s)
- Thaneeya Samwang
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
- Department
of Chemical Engineering, Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, 25/25 Phuttamonthon 4 Road, Nakhon Pathom 73170, Thailand
| | - Nozomi Morishita Watanabe
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
| | - Yukihiro Okamoto
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
| | - Sira Srinives
- Department
of Chemical Engineering, Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, 25/25 Phuttamonthon 4 Road, Nakhon Pathom 73170, Thailand
| | - Hiroshi Umakoshi
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
| |
Collapse
|
7
|
Geng H, Lupton EJ, Ma Y, Sun R, Grigsby CL, Brachi G, Li X, Zhou K, Stuckey DJ, Stevens MM. Hybrid Polypyrrole and Polydopamine Nanosheets for Precise Raman/Photoacoustic Imaging and Photothermal Therapy. Adv Healthc Mater 2023; 12:e2301148. [PMID: 37169351 PMCID: PMC11468501 DOI: 10.1002/adhm.202301148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The development of near-infrared light responsive conductive polymers provides a useful theranostic platform for malignant tumors by maximizing spatial resolution with deep tissue penetration for diagnosis and photothermal therapy. Herein, the self-assembly of ultrathin 2D polypyrrole nanosheets utilizing dopamine as a capping agent and a monolayer of octadecylamine as a template is demonstrated. The 2D polypyrrole-polydopamine nanostructure has tunable size distribution which shows strong absorption in the first and second near-infrared windows, enabling photoacoustic imaging and photothermal therapy. The hybrid double-layer is demonstrated to increase Raman intensity for 3D Raman imaging (up to two orders of magnitude enhancement and spatial resolution up to 1 µm). The acidic environment drives reversible doping of polypyrrole, which can be detected by Raman spectroscopy. The combined properties of the nanosheets can substantially enhance performance in dual-mode Raman and photoacoustic guided photothermal therapy, as shown by the 69% light to heat conversion efficiency and higher cytotoxicity against cancer spheroids. These pH-responsive features highlight the potential of 2D conductive polymers for applications in accurate, highly efficient theranostics.
Collapse
Affiliation(s)
- Hongya Geng
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmStockholm 171 11Sweden
- Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Emily J. Lupton
- UCL Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Yun Ma
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Rujie Sun
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Christopher L. Grigsby
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmStockholm 171 11Sweden
| | - Giulia Brachi
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Xiaorui Li
- Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Kun Zhou
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Daniel J. Stuckey
- UCL Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Molly M. Stevens
- Department of MaterialsDepartment of BioengineeringInstitute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmStockholm 171 11Sweden
| |
Collapse
|
8
|
Liang S, Xu W, Hu L, Yrjänä V, Wang Q, Rosqvist E, Wang L, Peltonen J, Rosenholm JM, Xu C, Latonen RM, Wang X. Aqueous Processable One-Dimensional Polypyrrole Nanostructured by Lignocellulose Nanofibril: A Conductive Interfacing Biomaterial. Biomacromolecules 2023; 24:3819-3834. [PMID: 37437256 PMCID: PMC10428162 DOI: 10.1021/acs.biomac.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/29/2023] [Indexed: 07/14/2023]
Abstract
One-dimensional (1D) nanomaterials of conductive polypyrrole (PPy) are competitive biomaterials for constructing bioelectronics to interface with biological systems. Synergistic synthesis using lignocellulose nanofibrils (LCNF) as a structural template in chemical oxidation of pyrrole with Fe(III) ions facilitates surface-confined polymerization of pyrrole on the nanofibril surface within a submicrometer- and micrometer-scale fibril length. It yields a core-shell nanocomposite of PPy@LCNF, wherein the surface of each individual fibril is coated with a thin nanoscale layer of PPy. A highly positive surface charge originating from protonated PPy gives this 1D nanomaterial a durable aqueous dispersity. The fibril-fibril entanglement in the PPy@LCNFs facilely supported versatile downstream processing, e.g., spray thin-coating on glass, flexible membranes with robust mechanics, or three-dimensional cryogels. A high electrical conductivity in the magnitude of several to 12 S·cm-1 was confirmed for the solid-form PPy@LCNFs. The PPy@LCNFs are electroactive and show potential cycling capacity, encompassing a large capacitance. Dynamic control of the doping/undoping process by applying an electric field combines electronic and ionic conductivity through the PPy@LCNFs. The low cytotoxicity of the material is confirmed in noncontact cell culture of human dermal fibroblasts. This study underpins the promises for this nanocomposite PPy@LCNF as a smart platform nanomaterial in constructing interfacing bioelectronics.
Collapse
Affiliation(s)
- Shujun Liang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland
| | - Wenyang Xu
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Liqiu Hu
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Ville Yrjänä
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Qingbo Wang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Emil Rosqvist
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Luyao Wang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Jouko Peltonen
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland
| | - Chunlin Xu
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Rose-Marie Latonen
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Xiaoju Wang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland
| |
Collapse
|
9
|
Minisy IM, Taboubi O, Hromádková J. One-Step Accelerated Synthesis of Conducting Polymer/Silver Composites and Their Catalytic Reduction of Cr(VI) Ions and p-Nitrophenol. Polymers (Basel) 2023; 15:polym15102366. [PMID: 37242941 DOI: 10.3390/polym15102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In this paper, silver nitrate was used as an oxidant to prepare polyaniline, polypyrrole, and poly(3,4-ethylene dioxythiophene)/silver composites through a simultaneous oxidation/reduction process. In addition, p-phenylenediamine was added with 1 mole% relative to the concentrations of the monomers to accelerate the polymerization reaction. The prepared conducting polymer/silver composites were characterized by scanning and transmission electron microscopies to study their morphologies; Fourier-transform infrared and Raman spectroscopies to confirm their molecular structures; and thermogravimetric analysis (TGA) to study their thermal stabilities. The silver content in the composites was estimated by energy-dispersive X-ray spectroscopy, ash analysis, and TGA. The conducting polymer/silver composites were utilized for the remediation of water pollutants through catalytic reduction. Hexavalent chromium ions (Cr(VI)) were photocatalytically reduced to trivalent chromium ions, and p-nitrophenol was catalytically reduced to p-aminophenol. The catalytic reduction reactions were found to follow the first-order kinetic model. Among the prepared composites, polyaniline/silver composite has shown the highest activity for the photocatalytic reduction of Cr(VI) ions with an apparent rate constant of 0.226 min-1 and efficiency of 100% within 20 min. Additionally, poly(3,4-ethylene dioxythiophene)/silver composite showed the highest catalytic activity towards the reduction of p-nitrophenol with an apparent rate constant of 0.445 min-1 and efficiency of 99.8% within 12 min.
Collapse
Affiliation(s)
- Islam M Minisy
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Oumayma Taboubi
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| |
Collapse
|
10
|
Luhakhra N, Tiwari SK. Polaron and bipolaron mediated photocatalytic activity of polypyrrole nanoparticles under visible light. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
11
|
Kozmai A, Porozhnyy M, Ruleva V, Gorobchenko A, Pismenskaya N, Nikonenko V. Is It Possible to Prepare a "Super" Anion-Exchange Membrane by a Polypyrrole-Based Modification? MEMBRANES 2023; 13:103. [PMID: 36676909 PMCID: PMC9865286 DOI: 10.3390/membranes13010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In spite of wide variety of commercial ion-exchange membranes, their characteristics, in particular, electrical conductivity and counterion permselectivity, are unsatisfactory for some applications, such as electrolyte solution concentration. This study is aimed at obtaining an anion-exchange membrane (AEM) of high performance in concentrated solutions. An AEM is prepared with a polypyrrole (PPy)-based modification of a heterogeneous AEM with quaternary ammonium functional groups. Concentration dependences of the conductivity, diffusion permeability and Cl− transport number in NaCl solutions are measured and simulated using a new version of the microheterogeneous model. The model describes changes in membrane swelling with increasing concentration and the effect of these changes on the transport characteristics. It is assumed that PPy occupies macro- and mesopores of the host membrane where it replaces non-selective electroneutral solution. Increasing conductivity and selectivity are explained by the presence of positively charged PPy groups. It is found that the conductivity of a freshly prepared membrane reaches 20 mS/cm and the chloride transport number > 0.99 in 4 M NaCl. A choice of input parameters allows quantitative agreement between the experimental and simulation results. However, PPy has shown itself to be an unstable material. This article discusses what parameters a membrane can have to show such exceptional characteristics.
Collapse
|
12
|
Polypyrrole Nanomaterials: Structure, Preparation and Application. Polymers (Basel) 2022; 14:polym14235139. [PMID: 36501534 PMCID: PMC9738686 DOI: 10.3390/polym14235139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
In the past decade, nanostructured polypyrrole (PPy) has been widely studied because of its many specific properties, which have obvious advantages over bulk-structured PPy. This review outlines the main structures, preparation methods, physicochemical properties, potential applications, and future prospects of PPy nanomaterials. The preparation approaches include the soft micellar template method, hard physical template method and templateless method. Due to their excellent electrical conductivity, biocompatibility, environmental stability and reversible redox properties, PPy nanomaterials have potential applications in the fields of energy storage, biomedicine, sensors, adsorption and impurity removal, electromagnetic shielding, and corrosion resistant. Finally, the current difficulties and future opportunities in this research area are discussed.
Collapse
|
13
|
Zubarev A, Cuzminschi M, Iordache AM, Iordache SM, Rizea C, Grigorescu CEA, Giuglea C. Graphene-Based Sensor for the Detection of Cortisol for Stress Level Monitoring and Diagnostics. Diagnostics (Basel) 2022; 12:2593. [PMID: 36359436 PMCID: PMC9689560 DOI: 10.3390/diagnostics12112593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 08/22/2023] Open
Abstract
In this work, we study the sensing properties of multi-layer graphene combined with pyrrole in order to elaborate low-cost, high-sensitive material for cortisol detection. Graphene nanoplatelets and pyrrole were dispersed in a solution containing 1M HNO3 by using a powerful ultrasound probe for 10 min, then centrifuged for 30 min at 4000 rpm; polymerization was performed by cyclic voltammetry. The graphene-pyrrole composite was tested to ultra-low levels of cortisol in artificial saliva, consistent to the levels excreted in human salivary samples. The composite was further investigated by Raman spectroscopy and we modeled the interaction between the sensitive layer and cortisol using MarvinBeans software. It shows a good sensitivity for salivary values of cortisol cyclic voltammetry being able to detect a level down to 0.5 ng/mL cortisol.
Collapse
Affiliation(s)
- Alexei Zubarev
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Marina Cuzminschi
- Department of Theoretical Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania
| | - Ana-Maria Iordache
- Optospintronics Department, National Institute for Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Stefan-Marian Iordache
- Optospintronics Department, National Institute for Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Constantin Rizea
- Cabinet Veterinar Roxy Veterinary Magurele, 077125 Magurele, Romania
| | - Cristiana E. A. Grigorescu
- Optospintronics Department, National Institute for Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Carmen Giuglea
- Department of Plastic Surgery, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
14
|
Chondath SK, Sreekala APK, Farzeena C, Varanakkottu SN, Menamparambath MM. Interfacial tension driven adsorption of MnO 2 nanoparticles at the liquid/liquid interface to tailor ultra-thin polypyrrole sheets. NANOSCALE 2022; 14:11197-11209. [PMID: 35900017 DOI: 10.1039/d2nr02130g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An emerging aspect of research is designing and developing fully tunable metamaterials for various applications with fluid interfaces. Liquid/liquid interface-assisted methods represent an efficient and facile route for synthesizing two-dimensional (2-D) thin films of potential materials. The underlying mechanism behind thin film formation at the liquid/liquid interface involves the preferential adsorption of nano-sized particles at the interface to minimize high interfacial tension. Here, a water/chloroform interface-assisted method is employed for the one-pot synthesis of highly crystalline polypyrrole/manganese dioxide (PPy/MnO2) sheets. The temporal evolution in the dynamic interfacial tension (from 32 mN m-1 to 17 mN m-1) observed in pendant drop tensiometry proved the preferential adsorption of MnO2 atttached PPy oligomers at the water/chloroform interface. An ultra-thin sheet-like morphology and uniform distribution of ∼6 nm highly crystalline MnO2 nanoparticles are evidenced by transmission and atomic force microscopy techniques. The predominance of interfacial polymerization in retaining the electrochemical activity of the PPy/MnO2 sheets is elucidated for the electrochemical detection of nicotine. This study opens a new avenue for the realization of ultra-thin sheets of polymer-nanomaterial hybrids, enabling applications ranging from new classes of sensors to optics.
Collapse
Affiliation(s)
- Subin Kaladi Chondath
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala, India.
| | | | - Chalikkara Farzeena
- School of Materials Science and Engineering, National Institute of Technology Calicut, Calicut-673601, Kerala, India
| | | | - Mini Mol Menamparambath
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala, India.
| |
Collapse
|
15
|
Lyu W, Li J, Trchová M, Wang G, Liao Y, Bober P, Stejskal J. Fabrication of polyaniline/poly(vinyl alcohol)/montmorillonite hybrid aerogels toward efficient adsorption of organic dye pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129004. [PMID: 35500341 DOI: 10.1016/j.jhazmat.2022.129004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Fabrication of adsorbents with excellent adsorption capacity, outstanding stability, easy separation ability, excellent recyclability and widely generality for organic dyes removal from wastewater remains challenging. Herein, three-dimensional polyaniline/poly(vinyl alcohol)/montmorillonite (PANI/PVAL/MMT) hybrid aerogels with easy separation performance and highly effective reusable adsorption on both anionic and cationic dyes were fabricated by a simple in-situ polymerization method. As-prepared hybrid aerogels were characterized via infrared and Raman spectra, scanning electron microscopy, energy dispersive spectra mapping, small and wide-angle X-ray scattering, thermogravimetric analysis, mercury intrusion porosimetry and elemental analysis. The results showed that MMT particles were successfully incorporated into aerogel matrix. Well-defined hierarchical structure, where PANI nanofibers are coated on the skeleton wall, can be observed for PANI/PVAL/MMT when the incorporation amount of MMT was around 11.1 wt%. The adsorption performance of as-prepared hybrid aerogels on both anionic and cationic dyes was systemically carried out at different solution pH, adsorbent dosage and initial dye concentration. The data analysis showed that the adsorption process for PVAL/PANI/MMT aerogel for Reactive Black 5, methyl orange and safranin followed Freundlich isotherm and the maximum experimental adsorption capacities were found to be 199, 251 and 57.0 mg g-1 at 25 °C, respectively. Mechanism studies indicated that the electrostatic interaction is the main driving force for the adsorption of dyes. The results demonstrated that the fabricated hybrid aerogel is an efficient adsorbent for the removal of both anionic and cationic organic dyes.
Collapse
Affiliation(s)
- Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic.
| | - Jiaqiang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Miroslava Trchová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic; University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic
| | - Guang Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China; Spallation Neutron Source Science Centre, 523803 Dongguan, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Patrycja Bober
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic.
| | - Jaroslav Stejskal
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
16
|
Yang ZY, Jin XZ, Huang CH, Lei YZ, Wang Y. Constructing A/B-Side Heterogeneous Asynchronous Structure with Ag 2Se Layers and Bushy-like PPy toward High-Performance Flexible Photo-Thermoelectric Generators. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33370-33382. [PMID: 35835593 DOI: 10.1021/acsami.2c09009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The enthusiasm for environmental energy harvesting has triggered a boom in research on photo-thermoelectric generators (PTEGs), and the relevant applications are mainly focused on self-energy supply sensors owing to the limitations of their output performances. For this purpose, high-output hierarchical heterogeneous PTEGs were constructed by assembling separately optimized thermoelectric (TE) and photothermal (PT) layers. The pressure and temperature conditions of Ag2Se films during the pressing process were first explored, and the sample with the optimal performance and least defects was selected as the TE layer. At the same time, different morphologies of polypyrrole (PPy) PT layers were electrochemically synthesized. It is found that the three-dimensional structure of Bushy-PPy could effectively improve the light absorption and thus enhance the PT conversion performance. The final assembled PTEG can produce an output voltage of -9.03 mV and an output power of 3.53 μW under the irradiation of a near-infrared light source of 300 mW cm-2 without a cooling source, and it can also achieve considerable output power under visible light irradiation of different intensities. Combining its high retentions of electrical conductivity (99%) and output performance (97%) after 1000 bending-tension cycles, it is proven to be a promising next-generation wearable flexible energy harvesting device.
Collapse
Affiliation(s)
- Zhen-Yu Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xin-Zheng Jin
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Chen-Hui Huang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
17
|
Chakraborty N, Mondal S. Chemiresistive NH 3 detection at sub-zero temperatures by polypyrrole- loaded Sn 1-xSb xO 2 nanocubes. MATERIALS HORIZONS 2022; 9:1750-1762. [PMID: 35507312 DOI: 10.1039/d2mh00236a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemiresistive gas sensors operate mainly at high temperatures, primarily due to the need of energy for surface adsorption-desorption of analytes. As a result, the operating temperature of the chemiresistive sensors could be reduced only to room temperature. Hence, a plethora of sensing requirements at temperatures below ambient have remained outside the scope of chemiresistive materials. In this work, we have developed an antimony-doped SnO2 nanocube-supported expanded polypyrrole network that could detect low ppm ammonia gas (≤20 ppm) at sub-zero temperatures with high response (∼4), selectivity, and short response and recovery times. The low temperature chemiresistive sensing has been explained in terms of the interplay of an extended conducting network of an in situ deposited polymer, effective transport properties of majority charge carriers and a loosely bound exciton-like electron-hole pair formation and breakage mechanism.
Collapse
Affiliation(s)
- Nirman Chakraborty
- CSIR Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Swastik Mondal
- CSIR Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
18
|
Pérez-Torres A, González-Hernández M, Ortiz P, Cortés MT. Statistical Study of the Influence of Electrosynthesis Conditions on the Capacitance of Polypyrrole. ACS OMEGA 2022; 7:15580-15595. [PMID: 35571838 PMCID: PMC9096924 DOI: 10.1021/acsomega.1c06843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Polypyrrole (PPy) is a promising material for the fabrication of flexible energy storage devices and much research has been published. However, no statistical tools have been used to relate PPy synthesis conditions to its energy storage performance, considering not only the main synthesis factors but also their interactions. In this work, we use a factorial design of experiments to evaluate the influence of two electropolymerization methods and three synthesis parameters on the energy storage capacity of PPy coatings. The polymers were characterized by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), electrochemical impedance spectroscopy (EIS), Raman spectroscopy, and scanning electron microscopy (SEM). Statistical tests showed that ClO4 --doped PPy exhibits higher capacitances than p-toluenesulfonate (pTS)-doped PPy, with a maximum capacitance of 353.75 ± 1.6 F g-1 at 1 A g-1. However, the pTS-doped PPy had better cycling stability, losing only 10% of its original energy storage capability after 5000 charge-discharge cycles at 1 A g-1. The best energy densities and power densities were 49.1 ± 0.2 Wh kg-1 and 2297 ± 15 W kg-1 (ClO4 --doped PPy) and 47.8 ± 1.5 Wh kg-1 and 2191 ± 91 W kg-1 (pTS-doped PPy), respectively, which indicates that through statistical tools, the optimal synthesis conditions are refined to take advantage of the energy storage properties of this polymer.
Collapse
Affiliation(s)
| | | | - Pablo Ortiz
- Department
of Chemical Engineering, Universidad de
los Andes, Bogotá 111711, Colombia
| | - María T. Cortés
- Department
of Chemistry, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
19
|
Chakraborty P, Ahamed ST, Mandal P, Mondal A, Banerjee D. Polypyrrole and a polypyrrole/nickel oxide composite – single-walled carbon nanotube enhanced photocatalytic activity under visible light. NEW J CHEM 2022. [DOI: 10.1039/d2nj02336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel NiO/PPy/SWCNT composite for removal of organic dyes with an emphasis on the effect of photocatalytic charge carrier transport and photoluminescence properties.
Collapse
Affiliation(s)
- Prasenjit Chakraborty
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Sk. Taheruddin Ahamed
- Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Pinaki Mandal
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Anup Mondal
- Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Dipali Banerjee
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| |
Collapse
|
20
|
Electroactive poly(vinylidene fluoride) electrospun fiber mats coated with polyaniline and polypyrrole for tissue regeneration applications. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Casanova-Chafer J, Umek P, Acosta S, Bittencourt C, Llobet E. Graphene Loading with Polypyrrole Nanoparticles for Trace-Level Detection of Ammonia at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40909-40921. [PMID: 34410097 PMCID: PMC8576760 DOI: 10.1021/acsami.1c10559] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The outstanding versatility of graphene for surface functionalization has been exploited by its decoration with synthesized polypyrrole (PPy) nanoparticles (NPs). A green, facile, and easily scalable for mass production nanocomposite development was proposed, and the resulting PPy@Graphene was implemented in chemoresistive gas sensors able to detect trace levels of ammonia (NH3) under room-temperature conditions. Gas exposure for 5 min revealed that the presence of nanoparticles decorating graphene entail greater sensitivity (13-fold) in comparison to the bare graphene performance. Noteworthy, excellent repeatability (0.7% of relative error) and a low limit of detection of 491 ppb were obtained, together with excellent long-term stability. Besides, an extensive material characterization was conducted, and vibration bands obtained via Raman spectroscopy confirmed the formation of PPy NPs, while X-ray spectroscopy (XPS) revealed the relative abundance of the different species, as polarons and bipolarons. Additionally, XPS analyses were conducted before and after NH3 exposure to assess the PPy aging and the changes induced in their physicochemical and electronic properties. Specifically, the gas sensor was tested during a 5-month period, demonstrating significant stability over time, since just a slight decrease (11%) in the responses was registered. In summary, the present work reports for the first time the use of PPy NPs decorating graphene for gas-sensing purposes, revealing promising properties for the development of unattended gas-sensing networks for monitoring air quality.
Collapse
Affiliation(s)
- Juan Casanova-Chafer
- Microsystems
Nanotechnologies for Chemical Analysis (MINOS), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Polona Umek
- Jožef
Stefan Institute, 10000 Ljubljana, Slovenia
| | - Selene Acosta
- Chimie
des Interactions Plasma−Surface (ChIPS), Research Institute
for Materials Science and Engineering, Université
de Mons, 7000 Mons, Belgium
| | - Carla Bittencourt
- Chimie
des Interactions Plasma−Surface (ChIPS), Research Institute
for Materials Science and Engineering, Université
de Mons, 7000 Mons, Belgium
| | - Eduard Llobet
- Microsystems
Nanotechnologies for Chemical Analysis (MINOS), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
22
|
Paúrová M, Taboubi O, Šeděnková I, Hromádková J, Matouš P, Herynek V, Šefc L, Babič M. Role of dextran in stabilization of polypyrrole nanoparticles for photoacoustic imaging. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Stejskal J, Sapurina I, Vilčáková J, Humpolíček P, Truong TH, Shishov MA, Trchová M, Kopecký D, Kolská Z, Prokeš J, Křivka I. Conducting polypyrrole-coated macroporous melamine sponges: a simple toy or an advanced material? CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01776-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Upadhyay J, Das TM, Borah R. Electrochemical performance study of polyaniline and polypyrrole based flexible electrodes. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1891799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Trishna Moyi Das
- Department of Physics, Dakshin Kamrup College, Guwahati, Assam, India
| | - Rajiv Borah
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| |
Collapse
|
25
|
Gómez IJ, Vázquez Sulleiro M, Mantione D, Alegret N. Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art. Polymers (Basel) 2021; 13:745. [PMID: 33673680 PMCID: PMC7957790 DOI: 10.3390/polym13050745] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Carbon nanomaterials are at the forefront of the newest technologies of the third millennium, and together with conductive polymers, represent a vast area of indispensable knowledge for developing the devices of tomorrow. This review focusses on the most recent advances in the field of conductive nanotechnology, which combines the properties of carbon nanomaterials with conjugated polymers. Hybrid materials resulting from the embedding of carbon nanotubes, carbon dots and graphene derivatives are taken into consideration and fully explored, with discussion of the most recent literature. An introduction into the three most widely used conductive polymers and a final section about the most recent biological results obtained using carbon nanotube hybrids will complete this overview of these innovative and beyond belief materials.
Collapse
Affiliation(s)
- I. Jénnifer Gómez
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| | | | - Daniele Mantione
- Laboratoire de Chimie des Polymères Organiques (LCPO-UMR 5629), Université de Bordeaux, Bordeaux INP, CNRS F, 33607 Pessac, France
| | - Nuria Alegret
- POLYMAT and Departamento de Química Aplicada, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
26
|
Jin XZ, Qi XD, Wang Y, Yang JH, Li H, Zhou ZW, Wang Y. Polypyrrole/Helical Carbon Nanotube Composite with Marvelous Photothermoelectric Performance for Longevous and Intelligent Internet of Things Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8808-8822. [PMID: 33565860 DOI: 10.1021/acsami.0c22123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Helical carbon nanotube (HCNT) is a vital member of carbon nanomaterials, but little effort was devoted to explore its unique characteristics and applications during the past few decades. Here, we report an organic thermoelectric composite with an excellent photothermoelectric (PTE) effect by conformally wrapping polypyrrole (PPy) on the intricate surface of HCNTs, which have been confirmed to have remarkable near-infrared (NIR) photothermal conversion capability and ultralow heat transportation characteristics. The results indicate that with the increasing HCNT content, PPy shell thickness reduces and exhibits denser as well as partial orientation, while the inter-ring angle slowly decreases and the bipolaron becomes dominant in carrier composition gradually. Consequently, the Seebeck coefficient increases monotonically, whereas the electrical conductivity remains nearly invariant. The final composite combines the benign thermoelectric properties, excellent photothermal response performance, and the lowest thermal conductivity of the carbon-based thermoelectric composite yet reported (0.064 W m-1 K-1). A single strip NIR light-stimulated adjustable delay switch was designed and fabricated, with the open-circuit voltage and short-circuit current under a 400 mW cm-2 NIR-stimulated approach to 720 μV and 62 nA with the discrepancy of consecutive periodic output signals less than 4.2%, exhibiting incredible stability and reliability and demonstrating the highest output voltage of a single strip among the reported organic PTE composite at room temperature. Our work fills in a gap of HCNT research, which hitherto existed in the PTE and thermoelectric field.
Collapse
Affiliation(s)
- Xin-Zheng Jin
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xiao-Dong Qi
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Ying Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Jing-Hui Yang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Hao Li
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Zuo-Wan Zhou
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
27
|
Photoelectrochemical Stability under Anodic and Cathodic Conditions of Meso-Tetra-(4-Sulfonatophenyl)-Porphyrinato Cobalt (II) Immobilized in Polypyrrole Thin Films. Polymers (Basel) 2021; 13:polym13040657. [PMID: 33672098 PMCID: PMC7926596 DOI: 10.3390/polym13040657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Cobalt porphyrins have emerged as promising catalysts for electrochemical and photoelectrochemical applications because of their good performance, low cost and the abundance of cobalt in the earth. Herein, a negatively charged porphyrin meso-tetra-(4-sulfonatophenyl)-porphin (TPPS) was immobilized in polypyrrole (PPy) during the electro-polymerization, and then it was metallized with cobalt to obtain meso-tetra-(4-sulfonatophenyl)-porphyrinato cobalt (II) (CoTPPS) as a dopant in PPy. The coatings were evaluated as photoelectrodes towards thiosulfate oxidation and oxygen reduction. For comparison purposes, the photoelectrochemical behavior of ClO4−-doped polypyrrole films was also evaluated. Characterizations by chronoamperometry, UV-Vis spectroscopy and Raman spectroscopy showed that polypyrrole is stable under anodic and cathodic conditions, but CoTPPS and TPPS immobilized in PPy are degraded during the anodic process. Thus, decreases in photocurrent of up to 87% and 97% for CoTPPS-doped PPy and TPPS-doped PPy were observed after a 30-min chronoamperometry test. On the other hand, good stability of CoTPPS and TPPS immobilized in PPy was observed during photoelectrochemical oxygen reduction, which was reflected in almost constant photocurrents obtained by chronoamperometry. These findings are relevant to understanding the role of CoTPPS as a catalyst or pre-catalyst in photoelectrochemical applications such as water splitting. In addition, these results could pave the way for further research to include CoTPPS-doped PPy in the design of novel photocathodes.
Collapse
|
28
|
Yu Z, Cai G, Liu X, Tang D. Pressure-Based Biosensor Integrated with a Flexible Pressure Sensor and an Electrochromic Device for Visual Detection. Anal Chem 2021; 93:2916-2925. [DOI: 10.1021/acs.analchem.0c04501] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhenzhong Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Guoneng Cai
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People’s Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| |
Collapse
|
29
|
CVD Conditions for MWCNTs Production and Their Effects on the Optical and Electrical Properties of PPy/MWCNTs, PANI/MWCNTs Nanocomposites by In Situ Electropolymerization. Polymers (Basel) 2021; 13:polym13030351. [PMID: 33499125 PMCID: PMC7865428 DOI: 10.3390/polym13030351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
In this work, the optimal conditions of synthesizing and purifying carbon nanotubes (CNTs) from ferrocene were selected at the first stage, where decomposition time, argon fluxes, precursor amounts, decomposition temperature (at 1023 K and 1123 K), and purification process (HNO3 + H2SO4 or HCl + H2O2), were modulated through chemical vapor deposition (CVD) and compared to commercial CNTs. The processing temperature at 1123 K and the treatment with HCl + H2O2 were key parameters influencing the purity, crystallinity, stability, and optical/electrical properties of bamboo-like morphology CNTs. Selected multiwalled CNTs (MWCNTs), from 1 to 20 wt%, were electropolymerized through in-situ polarization with conductive polymers (CPs), poly(aniline) (PANI) and poly(pyrrole) (PPy), for obtaining composites. In terms of structural stability and electrical properties, MWCNTs obtained by CVD were found to be better than commercial ones for producing CPs composites. The CNTs addition in both polymeric matrixes was of 6.5 wt%. In both systems, crystallinity degree, related to the alignment of PC chains on MWCNTs surface, was improved. Electrical conductivity, in terms of the carrier density and mobility, was adequately enhanced with CVD CNTs, which were even better than the evaluated commercial CNTs. The findings of this study demonstrate that synergistic effects among the hydrogen bonds, stability, and conductivity are better in PANI/MWCNTs than in PPy/MWCNTs composites, which open a promissory route to prepare materials for different technological applications.
Collapse
|
30
|
Moučka R, Sedlačík M, Kasparyan H, Prokeš J, Trchová M, Hassouna F, Kopecký D. One-Dimensional Nanostructures of Polypyrrole for Shielding of Electromagnetic Interference in the Microwave Region. Int J Mol Sci 2020; 21:E8814. [PMID: 33233379 PMCID: PMC7700242 DOI: 10.3390/ijms21228814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/22/2023] Open
Abstract
Polypyrrole one-dimensional nanostructures (nanotubes, nanobelts and nanofibers) were prepared using three various dyes (Methyl Orange, Methylene Blue and Eriochrome Black T). Their high electrical conductivity (from 17.1 to 60.9 S cm-1), good thermal stability (in the range from 25 to 150 °C) and resistivity against ageing (half-time of electrical conductivity around 80 days and better) were used in preparation of lightweight and flexible composites with silicone for electromagnetic interference shielding in the C-band region (5.85-8.2 GHz). The nanostructures' morphology and chemical structure were characterized by scanning electron microscopy, Brunauer-Emmett-Teller specific surface measurement and attenuated total reflection Fourier-transform infrared spectroscopy. DC electrical conductivity was measured using the Van der Pauw method. Complex permittivity and AC electrical conductivity of respective silicone composites were calculated from the measured scattering parameters. The relationships between structure, electrical properties and shielding efficiency were studied. It was found that 2 mm-thick silicone composites of polypyrrole nanotubes and nanobelts shield almost 80% of incident radiation in the C-band at very low loading of conductive filler in the silicone (5% w/w). Resulting lightweight and flexible polypyrrole composites exhibit promising properties for shielding of electromagnetic interference in sensitive biological and electronic systems.
Collapse
Affiliation(s)
- Robert Moučka
- Centre of Polymer Systems, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| | - Michal Sedlačík
- Centre of Polymer Systems, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
- Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Hayk Kasparyan
- Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic; (H.K.); (F.H.)
| | - Jan Prokeš
- Faculty of Mathematics and Physics, Charles University, 180 00 Prague 8, Czech Republic;
| | - Miroslava Trchová
- Central Laboratory, University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic;
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic; (H.K.); (F.H.)
| | - Dušan Kopecký
- Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic; (H.K.); (F.H.)
| |
Collapse
|
31
|
Polypyrrole nanoparticles: control of the size and morphology. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02331-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Zhang M, Zhu M, Zhong Y, Han T, Sun B, Zhu S, Gu C, Kong L, Zhang H, Liu J. A novel sulfur@void@hydrogel yolk-shell particle with a high sulfur content for volume-accommodable and polysulfide-adsorptive lithium-sulfur battery cathodes. NANOTECHNOLOGY 2020; 31:455402. [PMID: 32808597 DOI: 10.1088/1361-6528/abaa72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
High-energy-density secondary batteries are required for many applications such as electric vehicles. Lithium-sulfur (Li-S) batteries are receiving broad attention because of their high theoretical energy density. However, the large volume change of sulfur during cycling, poor conductivity, and the shuttle effect of sulfides severely restrict the Li-storage performance of Li-S batteries. Herein, we present a novel core-shell nanocomposite consisting of a sulfur core and a hydrogel polypyrrole (PPy) shell, enabling an ultra-high sulfur content of about 98.4% within the composite, which greatly exceeds many other conventional composites obtained by coating sulfur onto some hosts. In addition, the void inside the core-shell structure effectively accommodates the volume change; the conductive PPy shell improves the conductivity of the composite; and PPy is able to adsorb polysulfides, suppressing the shuttle effect. After cycling for 200 cycles, the prepared S@void@PPy composite retains a stable capacity of 650 mAh g-1, which is higher than the bare sulfur particles. The composite also exhibits a fast Li ion diffusion coefficient. Furthermore, the density functional theory calculations show the PPy shell is able to adsorb polysulfides efficiently, with a large adsorption energy and charge density transfer.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Minisy IM, Bober P, Šeděnková I, Stejskal J. Methyl red dye in the tuning of polypyrrole conductivity. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Yashas SR, Sandeep S, Shivakumar BP, Swamy NK. Potentiometric polyphenol oxidase biosensor for sensitive determination of phenolic micropollutant in environmental samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27234-27243. [PMID: 31134539 DOI: 10.1007/s11356-019-05495-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
The present study demonstrates the development of polyphenol oxidase (PPO) biosensor for the detection of catechol using strontium copper oxide (SrCuO2) and polypyrrole nanotubes (PPyNT) matrix. The SrCuO2 micro-seeds, a perovskite compound, are synthesized by co-precipitation under pH 8.0. The as-synthesized micro-seeds are characterized by scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction spectroscopy (XRD). The proposed sensor is fabricated on pencil graphite (P-Gr) by successive deposition of PPyNT, SrCuO2, and PPO enzyme. The developed PPO/SrCuO2/PPyNT/P-Gr sensor is characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) techniques. The PPO/SrCuO2/PPyNT/P-Gr displayed excellent electrocatalytic activity towards the oxidation and detection of catechol. The as-developed sensor showed sensitive response ascribing to limit of detection (LOD) of 0.15 μM and sensitivity of 15.60 μA μM-1 cm-2. The fabricated sensor exhibited excellent repeatability and longer shelf life. The proposed biosensor finds its application within the broad linear range of 1-50 μM. Real sample analysis of mineral water, tap water, and domestic wastewater using developed sensor showed acceptable recovery. Hence, the biosensor endeavors its application in environmental monitoring and protection.
Collapse
Affiliation(s)
- Shivamurthy Ravindra Yashas
- Department of Environmental Engineering, JSS Science and Technology University, Mysuru, Karnataka, 570006, India
| | - Shadakshari Sandeep
- Department of Chemistry, JSS Science and Technology University, Mysuru, Karnataka, 570006, India
| | | | - Ningappa Kumara Swamy
- Department of Chemistry, JSS Science and Technology University, Mysuru, Karnataka, 570006, India.
| |
Collapse
|
35
|
Jin H, He X, Zhou H, Zhang M, Tang Q, Lin L, Hao J, Zeng R. Efficacy of raman spectroscopy in the diagnosis of kidney cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20933. [PMID: 32629694 PMCID: PMC7337610 DOI: 10.1097/md.0000000000020933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To comprehensively analyze the relative effectiveness of Raman spectroscopy (RS) in the diagnosis of suspected kidney cancer. PATIENTS AND METHODS We performed a complete systematic review based on studies from PubMed/Medline, EMBASE, Web of Science, Ovid, Web of Knowledge, Cochrane Library and China National Knowledge Infrastructure. We identified 2413 spectra with strict criteria in 6 individual studies published between January 2008 and November 2018 in accordance to Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. We summarized the test performance using random effects models. RESULTS General pooled diagnostic sensitivity and specificity of RS to kidney cancer were 0.96 (95% confidence interval [CI] 0.95-0.97) and 0.91 (95% CI 0.89-0.92). The pooled positive likelihood ratio (LR) was 9.57 (95% CI 5.73-15.46) while the negative LR was 0.04 (95% CI 0.02-0.11). The pooled diagnostic odds ratio was 238.06 (95% CI 77.79-728.54). The area under curve of summary receiver operator characteristics was 0.9466. CONCLUSION Through this meta-analysis, we found a promisingly high sensitivity and specificity of RS in the diagnosis of suspected kidney masses and tumors. Other parameters like positive LR, negative LR, diagnostic odds ratio and area under curve of the summary receiver operator characteristics curve all helped to illustrate the high efficacy of RS in the diagnosis of kidney cancer.
Collapse
Affiliation(s)
- Hongyu Jin
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital
| | - Xiao He
- West China Clinical Skills Training Center, West China School of Medicine, Sichuan University
| | - Hui Zhou
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology
| | | | | | | | | | - Rui Zeng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Ultrasensitive Stress Biomarker Detection Using Polypyrrole Nanotube Coupled to a Field-Effect Transistor. MICROMACHINES 2020; 11:mi11040439. [PMID: 32331254 PMCID: PMC7231345 DOI: 10.3390/mi11040439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022]
Abstract
Stress biomarkers such as hormones and neurotransmitters in bodily fluids can indicate an individual’s physical and mental state, as well as influence their quality of life and health. Thus, sensitive and rapid detection of stress biomarkers (e.g., cortisol) is important for management of various diseases with harmful symptoms, including post-traumatic stress disorder and depression. Here, we describe rapid and sensitive cortisol detection based on a conducting polymer (CP) nanotube (NT) field-effect transistor (FET) platform. The synthesized polypyrrole (PPy) NT was functionalized with the cortisol antibody immunoglobulin G (IgG) for the sensitive and specific detection of cortisol hormone. The anti-cortisol IgG was covalently attached to a basal plane of PPy NT through an amide bond between the carboxyl group of PPy NT and the amino group of anti-cortisol IgG. The resulting field-effect transistor-type biosensor was utilized to evaluate various cortisol concentrations. Cortisol was sensitively measured to a detection limit of 2.7 × 10−10 M (100 pg/mL), with a dynamic range of 2.7 × 10−10 to 10−7 M; it exhibited rapid responses (<5 s). We believe that our approach can serve as an alternative to time-consuming and labor-intensive health questionnaires; it can also be used for diagnosis of underlying stress-related disorders.
Collapse
|
37
|
Stejskal J, Trchová M. Surfactants and amino acids in the control of nanotubular morphology of polypyrrole and their effect on the conductivity. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04607-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Stejskal J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00982-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Minisy IM, Bober P, Acharya U, Trchová M, Hromádková J, Pfleger J, Stejskal J. Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|