1
|
Dantus M. Ultrafast studies of elusive chemical reactions in the gas phase. Science 2024; 385:eadk1833. [PMID: 39116221 DOI: 10.1126/science.adk1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
The chemical composition of the interstellar medium and planetary atmospheres is constantly in flux as atoms and molecules collide and interact with high-energy particles such as electrons, protons, and photons. These transformative processes ultimately lead to the coalescence of molecules and eventually the birth of stars. Our understanding of these chemical ecosystems relies on models that synthesize data from gas-phase experiments, providing insights into reaction cross sections. This Review examines efforts to delve into the fundamental bond-forming and bond-breaking dynamics that occur during bimolecular and electron-initiated reactions. These experiments involve clever approaches to establish a time reference and the collision geometry necessary for tracking atomic motion with femtosecond time resolution. Findings from these efforts enhance present models and improve predictions for molecule-molecule and electron-molecule collisions.
Collapse
Affiliation(s)
- Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Wang Y, Zhan S, Hu Y, Chen X, Yin S. Understanding the Formation and Growth of New Atmospheric Particles at the Molecular Level through Laboratory Molecular Beam Experiments. Chempluschem 2024; 89:e202400108. [PMID: 38497136 DOI: 10.1002/cplu.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Atmospheric new particle formation (NPF), which exerts comprehensive implications for climate, air quality and human health, has received extensive attention. From molecule to cluster is the initial and most important stage of the nucleation process of atmospheric new particles. However, due to the complexity of the nucleation process and limitations of experimental characterization techniques, there is still a great uncertainty in understanding the nucleation mechanism at the molecular level. Laboratory-based molecular beam methods can experimentally implement the generation and growth of typical atmospheric gas-phase nucleation precursors to nanoscale clusters, characterize the key physical and chemical properties of clusters such as structure and composition, and obtain a series of their physicochemical parameters, including association rate coefficients, electron binding energy, pickup cross section and pickup probability and so on. These parameters can quantitatively illustrate the physicochemical properties of the cluster, and evaluate the effect of different gas phase nucleation precursors on the formation and growth of atmospheric new particles. We review the present literatures on atmospheric cluster formation and reaction employing the experimental method of laboratory molecular beam. The experimental apparatuses were classified and summarized from three aspects of cluster generation, growth and detection processes. Focus of this review is on the properties of nucleation clusters involving different precursor molecules of water, sulfuric acid, nitric acid and NxOy, respectively. We hope this review will provide a deep insight for effects of cluster physicochemical properties on nucleation, and reveal the formation and growth mechanism of atmospheric new particle at the molecular level.
Collapse
Affiliation(s)
- Yadong Wang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Shiyu Zhan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Yongjun Hu
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, P. R. China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| |
Collapse
|
3
|
Abma G, Parkes MA, Horke DA. Preparation of Tautomer-Pure Molecular Beams by Electrostatic Deflection. J Phys Chem Lett 2024; 15:4587-4592. [PMID: 38656191 PMCID: PMC11071072 DOI: 10.1021/acs.jpclett.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Tautomers are ubiquitous throughout chemistry and typically considered inseparable in solution. Yet (bio)chemical activity is highly tautomer-specific, with common examples being the amino and nucleic acids. While tautomers exist in an equilibrium in solution, in the cold environment of a molecular beam the barrier to tautomerization is typically much too high for interconversion, and tautomers can be considered separate species. Here we demonstrate the first separation of tautomers within a molecular beam and the production of tautomerically pure gas-phase samples. We show this for the 2-pyridone/2-hydroxypyridine system, an important structural motif in both uracil and cytosine. Spatial separation of the tautomers is achieved via electrostatic deflection in strong inhomogeneous fields. We furthermore collect tautomer-resolved photoelectron spectra using femtosecond multiphoton ionization. This paves the way for studying the structure-function-dynamic relationship on the level of individual tautomers, using approaches that typically lack the resolution to do so, such as ultrafast dynamics experiments.
Collapse
Affiliation(s)
- Grite
L. Abma
- Radboud
University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Michael A. Parkes
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Daniel A. Horke
- Radboud
University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
4
|
Johny M, Schouder CA, Al-Refaie A, He L, Wiese J, Stapelfeldt H, Trippel S, Küpper J. Water is a radiation protection agent for ionised pyrrole. Phys Chem Chem Phys 2024; 26:13118-13130. [PMID: 38629233 DOI: 10.1039/d3cp03471b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Radiation-induced damage of biological matter is an ubiquitous problem in nature. The influence of the hydration environment is widely discussed, but its exact role remains elusive. Utilising well defined solvated-molecule aggregates, we experimentally observed a hydrogen-bonded water molecule acting as a radiation protection agent for ionised pyrrole, a prototypical aromatic biomolecule. Pure samples of pyrrole and pyrrole(H2O) were outer-valence ionised and the subsequent damage and relaxation processes were studied. Bare pyrrole ions fragmented through the breaking of C-C or N-C covalent bonds. However, for pyrrole(H2O)+, we observed a strong protection of the pyrrole ring through the dissociative release of neutral water or by transferring an electron or proton across the hydrogen bond. Overall, a single water molecule strongly reduces the fragmentation probability and thus the persistent radiation damage of singly-ionised pyrrole.
Collapse
Affiliation(s)
- Melby Johny
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- LIDYL, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Ahmed Al-Refaie
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Joss Wiese
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Sebastian Trippel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
5
|
Vinklárek IS, Bromberger H, Vadassery N, Jin W, Küpper J, Trippel S. Reaction Pathways of Water Dimer Following Single Ionization. J Phys Chem A 2024; 128:1593-1599. [PMID: 38407935 PMCID: PMC10926096 DOI: 10.1021/acs.jpca.3c07958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Water dimer (H2O)2─a vital component of the earth's atmosphere─is an important prototypical hydrogen-bonded system. It provides direct insights into fundamental chemical and biochemical processes, e.g., proton transfer and ionic supramolecular dynamics, occurring in astro- and atmospheric chemistry. Exploiting a purified molecular beam of water dimer and multimass ion imaging, we report the simultaneous detection of all generated ion products of (H2O)2+ fragmentation following single ionization. Detailed information about ion yields and reaction energetics of 13 ion-radical pathways, 6 of which are new, of (H2O)2+ are presented, including strong 18O-isotope effects.
Collapse
Affiliation(s)
- Ivo S. Vinklárek
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Hubertus Bromberger
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Nidin Vadassery
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department
of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Wuwei Jin
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department
of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Center
for Ultrafast Imaging, Universität
Hamburg, Luruper Chaussee
149, 22761 Hamburg, Germany
- Department
of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sebastian Trippel
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Center
for Ultrafast Imaging, Universität
Hamburg, Luruper Chaussee
149, 22761 Hamburg, Germany
| |
Collapse
|
6
|
Mayer D, Lever F, Gühr M. Time-resolved x-ray spectroscopy of nucleobases and their thionated analogs. Photochem Photobiol 2024; 100:275-290. [PMID: 38174615 DOI: 10.1111/php.13903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The photoinduced relaxation dynamics of nucleobases and their thionated analogs have been investigated extensively over the past decades motivated by their crucial role in organisms and their application in medical and biochemical research and treatment. Most of these studies focused on the spectroscopy of valence electrons and fragmentation. The advent of ultrashort x-ray laser sources such as free-electron lasers, however, opens new opportunities for studying the ultrafast molecular relaxation dynamics utilizing the site- and element-selectivity of x-rays. In this review, we want to summarize ultrafast experiments on thymine and 2-thiouracil performed at free-electron lasers. We performed time-resolved x-ray absorption spectroscopy at the oxygen K-edge after UV excitation of thymine. In addition, we investigated the excited state dynamics of 2-tUra via x-ray photoelectron spectroscopy at sulfur. For these methods, we show a strong sensitivity to the electronic state or charge distribution, respectively. We also performed time-resolved Auger-Meitner spectroscopy, which shows spectral shifts associated with internuclear distances close to the probed site. We discuss the complementary aspects of time-resolved x-ray spectroscopy techniques compared to optical and UV spectroscopy for the investigation of ultrafast relaxation processes.
Collapse
Affiliation(s)
- Dennis Mayer
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Fabiano Lever
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Markus Gühr
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Institute of Physical Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Robinson MS, Küpper J. Unraveling the ultrafast dynamics of thermal-energy chemical reactions. Phys Chem Chem Phys 2024; 26:1587-1601. [PMID: 38131437 DOI: 10.1039/d3cp03954d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In this perspective, we discuss how one can initiate, image, and disentangle the ultrafast elementary steps of thermal-energy chemical dynamics, building upon advances in technology and scientific insight. We propose that combinations of ultrashort mid-infrared laser pulses, controlled molecular species in the gas phase, and forefront imaging techniques allow to unravel the elementary steps of general-chemistry reaction processes in real time. We detail, for prototypical first reaction systems, experimental methods enabling these investigations, how to sufficiently prepare and promote gas-phase samples to thermal-energy reactive states with contemporary ultrashort mid-infrared laser systems, and how to image the initiated ultrafast chemical dynamics. The results of such experiments will clearly further our understanding of general-chemistry reaction dynamics.
Collapse
Affiliation(s)
- Matthew S Robinson
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
8
|
Kwon YM, Lim YR, Bae G, Song DS, Jo HK, Park SY, Jang M, Yim S, Myung S, Lim J, Lee SS, Song W. Spectro-Microscopic Perceptions into Oxidation Behavior of Large-Scale Molybdenum Disulfide and its Photoelectrical Correlation. SMALL METHODS 2023; 7:e2300147. [PMID: 37317009 DOI: 10.1002/smtd.202300147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Despite the encouraging properties and research of 2D MoS2 , an ongoing issue associated with the oxidative instability remains elusive for practical optoelectronic applications. Thus, in-depth understanding of the oxidation behavior of large-scale and homogeneous 2D MoS2 is imperative. Here the structural and chemical transformations of large-area MoS2 multilayers by air-annealing with altered temperature and time via combinatorial spectro-microscopic analyses (Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy) are surveyed. The results gave indications pertaining to temperature- and time-dependent oxidation effects: i) heat-driven elimination of redundant residues, ii) internal strain stimulated by the formation of MoO bonds, iii) deterioration of the MoS2 crystallinity, iv) layer thinning, and v) morphological transformation from 2D MoS2 layers to particles. Photoelectrical characterization of the air-annealed MoS2 is implemented to capture the link between the oxidation behavior of MoS2 multilayers and their photoelectrical properties. The photocurrent based on MoS2 air-annealed at 200 °C is assessed to be 4.92 µA, which is 1.73 times higher than that of pristine MoS2 (2.84 µA). The diminution in the photocurrent of the photodetector based on MoS2 air-annealed above 300 °C in terms of the structural, chemical, and electrical conversions induced by the oxidation process is further discussed.
Collapse
Affiliation(s)
- Yeong Min Kwon
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Yi Rang Lim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Garam Bae
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Da Som Song
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Hyeong-Ku Jo
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Se Yeon Park
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Moonjeong Jang
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Soonmin Yim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Sung Myung
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jongsun Lim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Sun Sook Lee
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Wooseok Song
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| |
Collapse
|
9
|
Abstract
![]()
Cluster-size-resolved
ultrafast dynamics of the solvated electron
in neutral water clusters with n = 3 to ∼200
molecules are studied with pump–probe time-of-flight mass spectrometry
after below band gap excitation. For the smallest clusters, no longer-lived
(>100–200 fs) hydrated electrons were detected, indicating
a minimum size of n ∼ 14 for being able to
sustain hydrated electrons. Larger clusters show a systematic increase
of the number of hydrated electrons per molecule on the femtosecond
to picosecond time scale. We propose that with increasing cluster
size the underlying dynamics is governed by more effective electron
formation processes combined with less effective electron loss processes,
such as ultrafast hydrogen ejection and recombination. It appears
unlikely that any size dependence of the solvent relaxation dynamics
would be reflected in the observed time-resolved ion yields.
Collapse
Affiliation(s)
- Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| |
Collapse
|
10
|
Fárník M, Fedor J, Kočišek J, Lengyel J, Pluhařová E, Poterya V, Pysanenko A. Pickup and reactions of molecules on clusters relevant for atmospheric and interstellar processes. Phys Chem Chem Phys 2021; 23:3195-3213. [PMID: 33524089 DOI: 10.1039/d0cp06127a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this perspective, we review experiments with molecules picked up on large clusters in molecular beams with the focus on the processes in atmospheric and interstellar chemistry. First, we concentrate on the pickup itself, and we discuss the pickup cross sections. We measure the uptake of different atmospheric molecules on mixed nitric acid-water clusters and determine the accommodation coefficients relevant for aerosol formation in the Earth's atmosphere. Then the coagulation of the adsorbed molecules on the clusters is investigated. In the second part of this perspective, we review examples of different processes triggered by UV-photons or electrons in the clusters with embedded molecules. We start with the photodissociation of hydrogen halides and Freon CF2Cl2 on ice nanoparticles in connection with the polar stratospheric ozone depletion. Next, we mention reactions following the excitation and ionization of the molecules adsorbed on clusters. The first ionization-triggered reaction observed between two different molecules picked up on the cluster was the proton transfer between methanol and formic acid deposited on large argon clusters. Finally, negative ion reactions after slow electron attachment are illustrated by two examples: mixed nitric acid-water clusters, and hydrogen peroxide deposited on large ArN and (H2O)N clusters. The selected examples are discussed from the perspective of the atmospheric and interstellar chemistry, and several future directions are proposed.
Collapse
Affiliation(s)
- Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang J, He L, Petrovic J, Al-Refaie A, Bieker H, Onvlee J, Długołęcki K, Küpper J. Spatial separation of 2-propanol monomer and its ionization-fragmentation pathways. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|