1
|
Paul D, Biswas S, Yeom H, Na K, Pantoya ML, Kaiser RI. Unraveling the Nanosheet Zeolite-Catalyzed Combustion of Aluminum Nanoparticles-Doped exo-Tetrahydrodicyclopentadiene (JP-10) Energetic Fuel. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53938-53949. [PMID: 39348717 DOI: 10.1021/acsami.4c12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Nanosheet MFI zeolites (Zeolite Socony Mobil, five) have grown in popularity in cracking catalysis considering their tunability in porous topologies, acidic sites, and sheet thickness, thus allowing them to selectively adsorb molecules of specific sizes, shapes, and polarities, resulting in improved cracking performance for a specific fuel. Five different MFI zeolites in the form of a mesoporous nanosheet structure with a controlled concentration of acidic sites denoted as NSMFI(y), where y is Si/Al ratio, have been synthesized. The effects of the relative acidity content of these NSMFI(y) samples on the zeolite-catalyzed combustion of aluminum nanoparticles (AlNPs)-aided exo-tetrahydrodicyclopentadiene (JP-10) mixed energetic fuel droplets levitated in an oxygen-argon atmosphere were investigated using time-resolved imaging (optical and thermal infrared) and spectroscopic techniques (UV-vis and FTIR). The addition of 1.0 wt % of NSMFI(y) zeolites to AlNPs-JP-10 fluid fuel results in critically reduced ignition delays (9 ± 2 ms), elevated ignition temperatures (2800 ± 170 K), and prolonged burning times (60 ± 10 ms) with an enhanced combustion efficiency. The NSMFI(y) zeolites, which possess high acidity and significant mesoporosity, play a crucial role in improving the combustion efficiency by effectively catalyzing the chemical activation of JP-10 and prolonging the burning of the igniting droplet. The NSMFI (60) variant with the highest acidic site content achieved a maximum combustion efficiency of 80 ± 6%. A comprehensive catalytic combustion mechanism has been elucidated based on the detected reactive intermediates such as hydroxyl radical (OH) and aluminum monoxide (AlO). These findings will help to critically advance the development of next-generation, sustainable, and innovative mixed nanofluid fuels.
Collapse
Affiliation(s)
- Dababrata Paul
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Souvick Biswas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Hyeonji Yeom
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Kyungsu Na
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Michelle L Pantoya
- Mechanical Engineering Department, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
2
|
Biswas S, Paul D, Dias N, Lu W, Ahmed M, Pantoya ML, Kaiser RI. Efficient Oxidative Decomposition of Jet-Fuel exo-Tetrahydrodicyclopentadiene (JP-10) by Aluminum Nanoparticles in a Catalytic Microreactor: An Online Vacuum Ultraviolet Photoionization Study. J Phys Chem A 2024; 128:1665-1684. [PMID: 38383985 DOI: 10.1021/acs.jpca.3c08125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The oxidation of gas-phase exo-tetrahydrodicyclopentadiene (JP-10, C10H16) over aluminum nanoparticles (AlNP) has been explored between a temperature range of 300 and 1250 K with a novel chemical microreactor. The results are compared with those obtained from chemical microreactor studies of helium-seeded JP-10 and of helium-oxygen-seeded JP-10 without AlNP to gauge the effects of molecular oxygen and AlNP, respectively. Vacuum ultraviolet (VUV) photoionization mass spectrometry reveals that oxidative decomposition of JP-10 in the presence of AlNP is lowered by 350 and 200 K with and without AlNP, respectively, in comparison with pyrolysis of the fuel. Overall, 63 nascent gas-phase products are identified through photoionization efficiency (PIE) curves; these can be categorized as oxygenated molecules and their radicals as well as closed-shell hydrocarbons along with hydrocarbon radicals. Quantitative branching ratios of the products reveal diminishing yields of oxidized species and enhanced branching ratios of hydrocarbon species with the increase in temperature. While in the low-temperature regime (300-1000 K), AlNP solely acts as an efficient heat transfer medium, in the higher-temperature regime (1000-1250 K), chemical reactivity is triggered, facilitating the primary decomposition of the parent JP-10 molecule. This enhanced reactivity of AlNP could plausibly be linked to the exposed reactive surface of the aluminum (Al) core generated upon the rupture of the alumina shell material above the melting point of the metal (Al).
Collapse
Affiliation(s)
- Souvick Biswas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Dababrata Paul
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Nureshan Dias
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michelle L Pantoya
- Mechanical Engineering Department, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
3
|
Biswas S, Paul D, He C, Dias N, Ahmed M, Pantoya ML, Kaiser RI. Counterintuitive Catalytic Reactivity of the Aluminum Oxide "Passivation" Shell of Aluminum Nanoparticles Facilitating the Thermal Decomposition of exo-Tetrahydrodicyclopentadiene (JP-10). J Phys Chem Lett 2023; 14:9341-9350. [PMID: 37820371 DOI: 10.1021/acs.jpclett.3c02532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
High energy density aluminum nanoparticles (AlNPs) have been at the center of attention as additives to hydrocarbon jet fuels like exo-tetrahydrodicyclopentadiene (JP-10, C10H16) aiming at the superior performance of volume-limited air-breathing propulsion systems. However, a fundamental understanding of the ignition and combustion chemistry of JP-10 in the presence of AlNPs has been elusive. Exploiting an isomer-selective comprehensive identification of the decomposition products in a newly designed high-temperature chemical microreactor coupled to vacuum ultraviolet photoionization, we reveal an active low-temperature heterogeneous surface chemistry commencing at 650 K involving the alumina (Al2O3) shell. Contrary to textbook knowledge of an "inactive alumina surface", this unconventional reactivity, where oxygen is transferred from alumina to JP-10, leads to generating cyclic, oxygenated organics like phenol (C6H5OH) and 2,4-cyclopentadiene-1-one (C5H4O)─key tracers of an alumina-mediated interfacial chemistry. This counterintuitive reactivity transforms our knowledge of the (catalytic) processes of alumina-coated AlNPs on the molecular level.
Collapse
Affiliation(s)
- Souvick Biswas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Dababrata Paul
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Nureshan Dias
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michelle L Pantoya
- Mechanical Engineering Department, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
4
|
Biswas S, Antonov I, Fujioka K, Rizzo GL, Chambreau SD, Schneider S, Sun R, Kaiser RI. Unraveling the initial steps of the ignition chemistry of the hypergolic ionic liquid 1-ethyl-3-methylimidazolium cyanoborohydride ([EMIM][CBH]) with nitric acid (HNO 3) exploiting chirped pulse triggered droplet merging. Phys Chem Chem Phys 2023; 25:6602-6625. [PMID: 36806836 DOI: 10.1039/d2cp05943f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The composition of the products and the mechanistic routes for the reaction of the hypergolic ionic liquid (HIL) 1-ethyl-3-methylimidazolium cyanoborohydride ([EMIM][CBH]) and nitric acid (HNO3) at various concentrations from 10% to 70% were explored using a contactless single droplet merging within an ultrasonic levitation setup in an inert atmosphere of argon to reveal the initial steps that cause hypergolicity. The reactions were initiated through controlled droplet-merging manipulation triggered by a frequency chirp pulse amplitude modulation. Utilizing the high-speed optical and infrared cameras surrounding the levitation process chamber, intriguing visual images were unveiled: (i) extensive gas release and (ii) temperature rises of up to 435 K in the merged droplets. The gas development was validated qualitatively and quantitatively with Fourier Transform Infrared Spectroscopy (FTIR) indicating the major gas-phase products to be hydrogen cyanide (HCN) and nitrous oxide (N2O). The merged droplet was also probed by pulsed Raman spectroscopy which deciphered features for key functional groups of the reaction products and intermediates (-BH, -BH2, -BH3, -NCO); reaction kinetics revealed that the reaction was initiated by the interaction of the [CBH]- anion of the HIL with the oxidizer (HNO3) through proton transfer. Computations indicate the formation of a van-der-Waals complex between the [CBH]- anion and HNO3 initially, followed by proton transfer from the acid to the anion and subsequent extensive isomerization; these rearrangements were found to be essential for the formation of HCN and N2O. The exoergicity observed during the merging process provides a molar enthalpy change up to 10 kJ mol-1 to the system, which could be sufficient for a significant fraction of the reactants of about 11% to overcome the reaction barriers in the individual steps of the computationally determined minimum energy pathways.
Collapse
Affiliation(s)
- Souvick Biswas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Ivan Antonov
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Kazuumi Fujioka
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Grace L Rizzo
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | | | - Stefan Schneider
- Air Force Research Laboratory, Edwards Air Force Base, California 93524, USA
| | - Rui Sun
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
5
|
Antonov I, Chyba A, Perera SD, Turner AM, Pantoya ML, Finn MT, Epshteyn A, Kaiser RI. Discovery of Discrete Stages in the Oxidation of exo-Tetrahydrodicyclopentadiene (C 10H 16) Droplets Doped with Titanium-Aluminum-Boron Reactive Mixed-Metal Nanopowder. J Phys Chem Lett 2022; 13:9777-9785. [PMID: 36226837 DOI: 10.1021/acs.jpclett.2c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Titanium (Ti), aluminum (Al), and boron (B) reactive mixed-metal nanopowders (Ti-Al-B RMNPs) represent attractive additives to hydrocarbon fuels such as exo-tetrahydrodicyclopentadiene (C10H16; JP-10) enhancing the limited volumetric energy densities of traditional hydrocarbons, but fundamental mechanisms and combustion stages in the oxidation have been obscure. This understanding is of vital significance in the development of next-generation propulsion systems and energy-generation technologies. Here, we expose distinct oxidation stages of single droplets of JP-10 doped with Ti-Al-B-RMNP exploiting innovative ultrasonic levitator technology coupled with time-resolved spectroscopic (UV-vis) and imaging diagnostics (optical and infrared). Two spatially and temporally distinct stages of combustion define a glow flame stage in which JP-10 and nanoparticles combust via a homogeneous gas phase (Al) and heterogeneous gas-surface oxidation (Ti, B) and a slower diffusion flame stage associated with the oxidation of JP-10. These findings enable the development of next-generation RMNP fuel additives with superior payload delivery capabilities.
Collapse
Affiliation(s)
- Ivan Antonov
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Amandin Chyba
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Sahan D Perera
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Andrew M Turner
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Michelle L Pantoya
- Mechanical Engineering Department, Texas Tech University, Lubbock, Texas 79409, United States
| | - Matthew T Finn
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Albert Epshteyn
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
6
|
Biswas P, Xu F, Ghildiyal P, Zachariah MR. In-Situ Thermochemical Shock-Induced Stress at the Metal/Oxide Interface Enhances Reactivity of Aluminum Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26782-26790. [PMID: 35666986 DOI: 10.1021/acsami.2c05412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although aluminum (Al) nanoparticles have been widely explored as fuels in energetic applications, researchers are still exploring approaches for tuning their energy release profile via microstructural alteration. In this study, we show that a nanocomposite (∼70 nm) of a metal ammine complex, such as tetraamine copper nitrate (Cu(NH3)4(NO3)2/TACN), coated Al nanoparticles containing only 10 wt. % TACN, demonstrates a ∼200 K lower reaction initiation temperature coupled with an order of magnitude enhancement in the reaction rate. Through time/temperature-resolved mass spectrometry and ignition onset measurements at high heating rates, we show that the ignition occurs due to a condensed phase reaction between Al and copper oxide (CuO) crystallized on TACN decomposition. TEM and XRD analyses on the nanoparticles at an intermediate stage show that the rapid heat release from TACN decomposition in-situ enhances the strain on the Al core with induction of nonuniformities in the thickness of its AlOx shell. The thinner region of the nonuniform shell enables rapid mass transfer of Al ions to the crystallized CuO, enabling their condensed phase ignition. Hence, the thermochemical shock from TACN coating induces stresses at the Al/AlOx interface, which effectively switches the usual gas phase O2 diffusion-limited ignition process of Al nanoparticles to become condensed phase Al ion transfer controlled, thereby enhancing their reactivity.
Collapse
Affiliation(s)
- Prithwish Biswas
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Feiyu Xu
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California 92521, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Pankaj Ghildiyal
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California 92521, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Michael R Zachariah
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
7
|
Brotton SJ, Perera SD, Misra A, Kleimeier NF, Turner AM, Kaiser RI, Palenik M, Finn MT, Epshteyn A, Sun BJ, Zhang LJ, Chang AHH. Combined Spectroscopic and Computational Investigation on the Oxidation of exo-Tetrahydrodicyclopentadiene (JP-10; C 10H 16) Doped with Titanium-Aluminum-Boron Reactive Metal Nanopowder. J Phys Chem A 2021; 126:125-144. [PMID: 34935392 DOI: 10.1021/acs.jpca.1c08335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the results on the combustion of single, levitated droplets of exo-tetrahydrodicyclopentadiene (JP-10) doped with titanium-aluminum-boron (Ti-Al-B) reactive metal nanopowders (RMNPs) in an oxygen (60%)-argon (40%) atmosphere by exploiting an ultrasonic levitator with droplets ignited by a carbon dioxide laser. Ultraviolet-visible (UV-vis) emission spectroscopy revealed the presence of gas-phase aluminum (Al) and titanium (Ti) atoms. These atoms can be oxidized in the gas phase by molecular oxygen to form spectroscopically detected aluminum monoxide (AlO) and titanium monoxide (TiO) transients. Analysis of the optical ignition videos supports that the nanoparticles are ignited before JP-10. The detection of boron monoxide (BO) further proposes an active surface chemistry through the oxidation of the RMNPs and the release of at least BO into the gas phase. The oxidation of gas-phase BO by molecular oxygen to boron dioxide (BO2) plus atomic oxygen might operate in the gas phase, although the involvement of surface oxidation processes of RMNPs to BO2 cannot be discounted. The UV-vis emission spectra also revealed the key reactive intermediates (OH, CH, C2, and HCO) of the oxidation of JP-10. Electronic structure calculations reveal that the presence of reactive radicals has a profound impact on the oxidation of JP-10. Although titanium monoxide (TiO) reacts to produce titanium dioxide (TiO2), it does not engage in an active JP-10 chemistry as all abstraction pathways are endoergic by more than 217 kJ mol-1. This is similar for atomic aluminum and titanium, whose hydrogen abstraction reactions from JP-10 were revealed to be endoergic by at least 77 kJ mol-1. Therefore, aluminum and titanium react preferentially with molecular oxygen to produce their monoxides. However, the formation of BO, AlO, and BO2 supplies a pool of highly reactive radicals, which can abstract hydrogen from JP-10 via transition states ranging from only 1 to 5 kJ mol-1 above the separated reactants, forming JP-10 radicals along with the hydrogen abstraction products (boron hydride oxide, aluminum monohydroxide, and metaboric acid) in the overall exoergic reactions. These abstraction barriers are well below the barriers of abstractions for ground-state atomic oxygen and molecular oxygen. In this sense, gas-phase BO, AlO, and BO2 catalyze the oxidation of gas-phase JP-10 via hydrogen abstraction, forming highly reactive JP-10 radicals. Overall, the addition of RMNPs to JP-10 not only provides a higher energy density fuel but is also expected to lead to shorter ignition delays compared to pure JP-10 due to the highly reactive pool of radicals (BO, AlO, and BO2) formed in the initial stage of the oxidation process.
Collapse
Affiliation(s)
- Stephen J Brotton
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Sahan D Perera
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Anupam Misra
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - N Fabian Kleimeier
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Andrew M Turner
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Mark Palenik
- U.S. Naval Research Laboratory, Washington, D.C., Washington, D.C. 20375, United States
| | - Matthew T Finn
- U.S. Naval Research Laboratory, Washington, D.C., Washington, D.C. 20375, United States
| | - Albert Epshteyn
- U.S. Naval Research Laboratory, Washington, D.C., Washington, D.C. 20375, United States
| | - Bing-Jian Sun
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Li-Jie Zhang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Agnes H H Chang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| |
Collapse
|
8
|
Perera SD, Brotton SJ, Shinsato H, Kaiser RI, Choi Y, Na K. Catalytic Effects of Zeolite Socony Mobil-5 (ZSM-5) on the Oxidation of Acoustically Levitated exo-Tetrahydrodicyclopentadiene (JP-10) Droplets. J Phys Chem A 2021; 125:4896-4909. [PMID: 34041908 DOI: 10.1021/acs.jpca.1c02892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Jet propulsion 10 (JP-10) droplets with and without aluminum nanoparticles in conjunction with HZSM-5 zeolite and surfactants were ultrasonically levitated, and their oxidation processes were explored to identify how the oxidation process of JP-10 is catalytically affected by the HZSM-5 zeolites and how the surfactant and Al NPs in the system impacted the key experimental parameters of the ignition such as ignition delay time, burn rate, and the maximum temperatures. Singly levitated droplets were ignited using a carbon dioxide laser under an oxygen-argon atmosphere. Pure JP-10 droplets and JP-10 droplets with silicon dioxide of an identical size distribution as the zeolite HZSM-5 did not ignite in strong contrast to HZSM-5-doped droplets. Acidic sites were found to be critical in the ignition of the JP-10. With the addition of the surfactant, the characteristic features of the JP-10 ignition were improved, so the ignition delay time of the zeolite-JP-10 samples were decreased by 2-3 ms and the burn rates were increased by 1.3 to 1.6 × 105 K s-1. The addition of Al NPs increased the maximum temperatures during the combustion of the systems by 300-400 K. Intermediates and end products of the JP-10 oxidation over HZSM-5 were characterized by UV-vis emission and Fourier-transform infrared transmission spectroscopies, revealing key reactive intermediates (OH, CH, C2, O2, and HCO) along with the H2O molecules in highly excited rovibrational states. Overall, this work revealed that acetic sites in HZSM-5 are critical in the catalytic ignition of JP-10 droplets with the addition of the surfactant and Al NPs, enhancing the oxidation process of JP-10 over HZSM-5 zeolites.
Collapse
Affiliation(s)
- Sahan D Perera
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Stephen J Brotton
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Haylie Shinsato
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yuyeol Choi
- Department of Chemistry, Chonnam National University, Buk-gu, Gwangju 61186, South Korea
| | - Kyungsu Na
- Department of Chemistry, Chonnam National University, Buk-gu, Gwangju 61186, South Korea
| |
Collapse
|
9
|
Brotton SJ, Kaiser RI. Effects of Nitrogen Dioxide on the Oxidation of Levitated exo-Tetrahydrodicyclopentadiene (JP-10) Droplets Doped with Aluminum Nanoparticles. J Phys Chem A 2021; 125:2727-2742. [PMID: 33769056 DOI: 10.1021/acs.jpca.0c10155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrogen dioxide (NO2) can significantly improve the combustion of hydrocarbon fuels, but the effect of NO2 on the ignition of fuels with energy densities enhanced by aluminum (Al) nanoparticles has not been studied. We therefore investigated the effects of NO2 on the ignition of JP-10 droplets containing Al nanoparticles initially acoustically levitated in an oxygen-argon mixture. A carbon dioxide laser ignited the droplet and the resulting combustion processes were traced in real time using Raman, ultraviolet-visible (UV-vis), and Fourier-transform infrared (FTIR) spectroscopies simultaneously with a high-speed optical or thermal imaging camera. Temperature temporal profiles of the ignition processes revealed that a 5% concentration of NO2 did not cause measurable differences in the ignition delay time or the initial rate of temperature rise, but the maximum flame temperature was reduced from 2930 ± 120 K to 2520 ± 160 K. The relative amplitudes of the UV-vis emission bands were used to deduce how NO2 affected the composition of the radical pool during the oxidation process; for example, the radicals NO, NH, and CN were detected and the OH (A 2Σ+-X 2Π) band at 310 nm was less prominent with NO2. Localized heating from a tightly focused infrared laser beam provided sufficient energy to activate chemical reactions between the JP-10 and NO2 without igniting the droplet. Raman spectra of the residue produced give information about the initial oxidation mechanisms and suggest that organic nitro compounds formed. Thus, in contrast to previous studies of hydrocarbon combustion without Al nanoparticles, NO2 was found not to enhance the ignition of an Al-doped JP-10 droplet ignited by a CO2 laser.
Collapse
Affiliation(s)
- Stephen J Brotton
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
10
|
Brotton SJ, Malek MJ, Anderson SL, Kaiser RI. Effects of acetonitrile-assisted ball-milled aluminum nanoparticles on the ignition of acoustically levitated exo-tetrahydrodicyclopentadiene (JP-10) droplets. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Brotton SJ, Kaiser RI. Controlled Chemistry via Contactless Manipulation and Merging of Droplets in an Acoustic Levitator. Anal Chem 2020; 92:8371-8377. [PMID: 32476411 DOI: 10.1021/acs.analchem.0c00929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A unique, versatile, and material-independent approach to manipulate contactlessly and merge two chemically distinct droplets suspended in an acoustic levitator is reported. Large-amplitude axial oscillations are induced in the top droplet by low-frequency amplitude modulation of the ultrasonic carrier wave, which causes the top sample to merge with the sample in the pressure minimum below. The levitator is enclosed within a pressure-compatible process chamber to enable control of the environmental conditions. The merging technique permits precise control of the substances affecting the chemical reactions, the sample temperature, the volumes of the liquid reactants down to the picoliter range, and the mixing locations in space and time. The performance of this approach is demonstrated by merging droplets of water (H2O) and ethanol (C2H5OH), conducting an acid-base reaction between aqueous droplets of sodium hydroxycarbonate (NaHCO3) and acetic acid (CH3COOH), the hypergolic explosion produced via merging a droplet of an ionic liquid with nitric acid (HNO3), and the coalescence of a solid particle (CuSO4·5H2O) and a water droplet followed by dehydration using a carbon dioxide laser. The physical and chemical changes produced by the merging are traced in real time via complementary Raman, Fourier-transform infrared, and ultraviolet-visible spectroscopies. The concept of the contactless manipulation of liquid droplets and solid particles may fundamentally change how scientists control and study chemical reactions relevant to, for example, combustion systems, material sciences, medicinal chemistry, planetary sciences, and biochemistry.
Collapse
Affiliation(s)
- Stephen J Brotton
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|