1
|
Song J. In the Beginning: Let Hydration Be Coded in Proteins for Manifestation and Modulation by Salts and Adenosine Triphosphate. Int J Mol Sci 2024; 25:12817. [PMID: 39684527 DOI: 10.3390/ijms252312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Water exists in the beginning and hydrates all matter. Life emerged in water, requiring three essential components in compartmentalized spaces: (1) universal energy sources driving biochemical reactions and processes, (2) molecules that store, encode, and transmit information, and (3) functional players carrying out biological activities and structural organization. Phosphorus has been selected to create adenosine triphosphate (ATP) as the universal energy currency, nucleic acids for genetic information storage and transmission, and phospholipids for cellular compartmentalization. Meanwhile, proteins composed of 20 α-amino acids have evolved into extremely diverse three-dimensional forms, including folded domains, intrinsically disordered regions (IDRs), and membrane-bound forms, to fulfill functional and structural roles. This review examines several unique findings: (1) insoluble proteins, including membrane proteins, can become solubilized in unsalted water, while folded cytosolic proteins can acquire membrane-inserting capacity; (2) Hofmeister salts affect protein stability by targeting hydration; (3) ATP biphasically modulates liquid-liquid phase separation (LLPS) of IDRs; (4) ATP antagonizes crowding-induced protein destabilization; and (5) ATP and triphosphates have the highest efficiency in inducing protein folding. These findings imply the following: (1) hydration might be encoded in protein sequences, central to manifestation and modulation of protein structures, dynamics, and functionalities; (2) phosphate anions have a unique capacity in enhancing μs-ms protein dynamics, likely through ionic state exchanges in the hydration shell, underpinning ATP, polyphosphate, and nucleic acids as molecular chaperones for protein folding; and (3) ATP, by linking triphosphate with adenosine, has acquired the capacity to spacetime-specifically release energy and modulate protein hydration, thus possessing myriad energy-dependent and -independent functions. In light of the success of AlphaFolds in accurately predicting protein structures by neural networks that store information as distributed patterns across nodes, a fundamental question arises: Could cellular networks also handle information similarly but with more intricate coding, diverse topological architectures, and spacetime-specific ATP energy supply in membrane-compartmentalized aqueous environments?
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
2
|
Paredes-Arriaga A, Negrón-Mendoza A, Frias D, Rivera A, Ramos-Bernal S. An experimental and numerical model of the behavior of cytosine in aqueous solution under gamma radiation. Relevance in prebiotic chemistry. Heliyon 2024; 10:e33288. [PMID: 39676821 PMCID: PMC11639739 DOI: 10.1016/j.heliyon.2024.e33288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 12/17/2024] Open
Abstract
Cytosine is an essential chemical molecule in living systems, such as DNA and RNA, it is essential in astrobiology to study how it behaves under probable primitive conditions. We looked at how cytosine broke down in aqueous solutions exposed to high radiation levels to learn more about how stable it might have been on the early Earth. We conducted various types of analysis, such as ultraviolet-visible spectroscopy and high-pressure liquid chromatography. We also developed a computer model to describe the kinetic processes and learn more about the molecules involved in the system. This model fits the results of experiments and lets us study cytosine's stability when it is exposed to gamma radiation. It enables researchers to theorize processes that are hard to test in the laboratory and is essential for studying how stable cytosine behaves in high-radiation settings.
Collapse
Affiliation(s)
- A. Paredes-Arriaga
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, C.P, 04510, CDMX, Mexico
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, C.P, 04510, CDMX, Mexico
| | - A. Negrón-Mendoza
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, C.P, 04510, CDMX, Mexico
| | - D. Frias
- Departamento de Ciências Exatas e da Terra, Universidad de do Estado da Bahia, Salvador, BA, Brazil
| | - A.L. Rivera
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, C.P, 04510, CDMX, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, C.P, 04510, CDMX, Mexico
| | - S. Ramos-Bernal
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, C.P, 04510, CDMX, Mexico
| |
Collapse
|
3
|
Todd ZR, Lozano GG, Kufner CL, Ranjan S, Catling DC, Sasselov DD. UV Transmission in Prebiotic Environments on Early Earth. ASTROBIOLOGY 2024; 24:559-569. [PMID: 38768432 DOI: 10.1089/ast.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ultraviolet (UV) light is likely to have played important roles in surficial origins of life scenarios, potentially as a productive source of energy and molecular activation, as a selective means to remove unwanted side products, or as a destructive mechanism resulting in loss of molecules/biomolecules over time. The transmission of UV light through prebiotic waters depends upon the chemical constituents of such waters, but constraints on this transmission are limited. Here, we experimentally measure the molar decadic extinction coefficients for a number of small molecules used in various prebiotic synthetic schemes. We find that many small feedstock molecules absorb most at short (∼200 nm) wavelengths, with decreasing UV absorption at longer wavelengths. For comparison, we also measured the nucleobase adenine and found that adenine absorbs significantly more than the simpler molecules often invoked in prebiotic synthesis. Our results enable the calculation of UV photon penetration under varying chemical scenarios and allow further constraints on plausibility and self-consistency of such scenarios. While the precise path that prebiotic chemistry took remains elusive, improved understanding of the UV environment in prebiotically plausible waters can help constrain both the chemistry and the environmental conditions that may allow such chemistry to occur.
Collapse
Affiliation(s)
- Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
- Department of Chemistry, Department of Astronomy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabriella G Lozano
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| | - Corinna L Kufner
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| | - Sukrit Ranjan
- Lunar & Planetary Laboratory/Department of Planetary Sciences, University of Arizona, Tucson, Arizona, USA
| | - David C Catling
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Dimitar D Sasselov
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Rimmer PB, Shorttle O. A Surface Hydrothermal Source of Nitriles and Isonitriles. Life (Basel) 2024; 14:498. [PMID: 38672768 PMCID: PMC11051382 DOI: 10.3390/life14040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Giant impacts can generate transient hydrogen-rich atmospheres, reducing atmospheric carbon. The reduced carbon will form hazes that rain out onto the surface and can become incorporated into the crust. Once heated, a large fraction of the carbon is converted into graphite. The result is that local regions of the Hadean crust were plausibly saturated with graphite. We explore the consequences of such a crust for a prebiotic surface hydrothermal vent scenario. We model a surface vent fed by nitrogen-rich volcanic gas from high-temperature magmas passing through graphite-saturated crust. We consider this occurring at pressures of 1-1000bar and temperatures of 1500-1700 ∘C. The equilibrium with graphite purifies the leftover gas, resulting in substantial quantities of nitriles (0.1% HCN and 1ppm HC3N) and isonitriles (0.01% HNC) relevant for prebiotic chemistry. We use these results to predict gas-phase concentrations of methyl isocyanide of ∼1 ppm. Methyl isocyanide can participate in the non-enzymatic activation and ligation of the monomeric building blocks of life, and surface or shallow hydrothermal environments provide its only known equilibrium geochemical source.
Collapse
Affiliation(s)
- Paul B. Rimmer
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
| | - Oliver Shorttle
- Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| |
Collapse
|
5
|
Dai S, Xie Z, Wang B, Ye R, Ou X, Wang C, Yu N, Huang C, Zhao J, Cai C, Zhang F, Buratto D, Khan T, Qiao Y, Hua Y, Zhou R, Tian B. An inorganic mineral-based protocell with prebiotic radiation fitness. Nat Commun 2023; 14:7699. [PMID: 38052788 PMCID: PMC10698201 DOI: 10.1038/s41467-023-43272-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Protocell fitness under extreme prebiotic conditions is critical in understanding the origin of life. However, little is known about protocell's survival and fitness under prebiotic radiations. Here we present a radioresistant protocell model based on assembly of two types of coacervate droplets, which are formed through interactions of inorganic polyphosphate (polyP) with divalent metal cation and cationic tripeptide, respectively. Among the coacervate droplets, only the polyP-Mn droplet is radiotolerant and provides strong protection for recruited proteins. The radiosensitive polyP-tripeptide droplet sequestered with both proteins and DNA could be encapsulated inside the polyP-Mn droplet, and form into a compartmentalized protocell. The protocell protects the inner nucleoid-like condensate through efficient reactive oxygen species' scavenging capacity of intracellular nonenzymic antioxidants including Mn-phosphate and Mn-peptide. Our results demonstrate a radioresistant protocell model with redox reaction system in response to ionizing radiation, which might enable the protocell fitness to prebiotic radiation on the primitive Earth preceding the emergence of enzyme-based fitness. This protocell might also provide applications in synthetic biology as bioreactor or drug delivery system.
Collapse
Affiliation(s)
- Shang Dai
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China
| | - Zhenming Xie
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Binqiang Wang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rui Ye
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Xinwen Ou
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Chen Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Ning Yu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Cheng Huang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chunhui Cai
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Furong Zhang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Damiano Buratto
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Taimoor Khan
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Yan Qiao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Ruhong Zhou
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China.
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Bing Tian
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Meléndez-López A, Cruz-Castañeda J, Negrón-Mendoza A, Ramos-Bernal S, Heredia A, Castro-Sanpedro L, Aguilar-Flores D. Gamma irradiation of adenine and guanine adsorbed into hectorite and attapulgite. Heliyon 2023; 9:e16071. [PMID: 37215897 PMCID: PMC10196509 DOI: 10.1016/j.heliyon.2023.e16071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
This study focuses on the radiolysis (up to 36 kGy) of guanine and adenine (nitrogenous bases) adsorbed in hectorite and attapulgite to highlight the potential role of clays as protective agents against ionizing radiation in prebiotic processes. In this framework, the study investigated the nitrogenous bases' behavior in two types of systems: a) aqueous suspension of adenine-clay systems and b) guanine-clay systems in the solid state. This research utilized spectroscopic and chromatographic techniques for its analytical purposes. Regardless of the reaction medium conditions, the results reveal that nitrogenous bases are stable under ionizing irradiation when adsorbed on both clays.
Collapse
Affiliation(s)
- A. Meléndez-López
- Instituto de Ciencias Nucleares, Circuito Exterior s/n, Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Deleg. Coyoacán, Apartado Postal 70-543, C.P. 04510, CDMX, Mexico
| | - J. Cruz-Castañeda
- Instituto de Ciencias Nucleares, Circuito Exterior s/n, Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Deleg. Coyoacán, Apartado Postal 70-543, C.P. 04510, CDMX, Mexico
| | - A. Negrón-Mendoza
- Instituto de Ciencias Nucleares, Circuito Exterior s/n, Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Deleg. Coyoacán, Apartado Postal 70-543, C.P. 04510, CDMX, Mexico
| | - S. Ramos-Bernal
- Instituto de Ciencias Nucleares, Circuito Exterior s/n, Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Deleg. Coyoacán, Apartado Postal 70-543, C.P. 04510, CDMX, Mexico
| | - A. Heredia
- Instituto de Ciencias Nucleares, Circuito Exterior s/n, Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Deleg. Coyoacán, Apartado Postal 70-543, C.P. 04510, CDMX, Mexico
| | - L.G. Castro-Sanpedro
- Facultad de Estudios Superiores Zaragoza Campus 2. Batalla 5 de Mayo s/n, Ejército de Oriente Zona Peñón, Iztapalapa, 09230, CDMX, Mexico
| | - D. Aguilar-Flores
- Facultad de Estudios Superiores Zaragoza Campus 2. Batalla 5 de Mayo s/n, Ejército de Oriente Zona Peñón, Iztapalapa, 09230, CDMX, Mexico
| |
Collapse
|
7
|
Pastorek A, Clark VHJ, Yurchenko SN, Ferus M, Civiš S. New physical insights: Formamide discharge decomposition and the role of fragments in the formation of large biomolecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121322. [PMID: 35537261 DOI: 10.1016/j.saa.2022.121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
In this work we present a time-resolved FTIR spectroscopic study on kinetics of atomic and molecular species, specifically CO, CN radical, N2, HCN and CO2 generated in a glow discharge of formamide-nitrogen-water mixture in a helium buffer gas. Radicals such as NH, CH and OH have been proven to be fundamental stones of subsequent chemical reactions having a crucial role in a prebiotic synthesis of large organic molecules. This work contains three main goals. Firstly, we present our time-resolved spectra of formamide decomposition products and discuss the mechanism of collisional excitations between specific species. Secondly, according to our time resolution, we demonstrate and explain the band shape of CO's first overtone and the energy transfer between excited nitrogen and CO, present in our spectra. Lastly, we present theoretical results for the non-LTE modelling of the spectra using bi-temperature approach and a 1D harmonic Franck-Condon approach for the multi-molecule spectra of the formamide decomposition process in the 1800-5600 cm-1 spectral range.
Collapse
Affiliation(s)
- Adam Pastorek
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 18200 Prague 8, Czech Republic; Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, 11519 Prague 1, Czech Republic
| | - Victoria H J Clark
- Faculty of Mathematics and Physical Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Sergei N Yurchenko
- Faculty of Mathematics and Physical Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Martin Ferus
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 18200 Prague 8, Czech Republic
| | - Svatopluk Civiš
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 18200 Prague 8, Czech Republic.
| |
Collapse
|
8
|
Sharma S, Arya A, Cruz R, Cleaves II HJ. Automated Exploration of Prebiotic Chemical Reaction Space: Progress and Perspectives. Life (Basel) 2021; 11:1140. [PMID: 34833016 PMCID: PMC8624352 DOI: 10.3390/life11111140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Prebiotic chemistry often involves the study of complex systems of chemical reactions that form large networks with a large number of diverse species. Such complex systems may have given rise to emergent phenomena that ultimately led to the origin of life on Earth. The environmental conditions and processes involved in this emergence may not be fully recapitulable, making it difficult for experimentalists to study prebiotic systems in laboratory simulations. Computational chemistry offers efficient ways to study such chemical systems and identify the ones most likely to display complex properties associated with life. Here, we review tools and techniques for modelling prebiotic chemical reaction networks and outline possible ways to identify self-replicating features that are central to many origin-of-life models.
Collapse
Affiliation(s)
- Siddhant Sharma
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Department of Biochemistry, Deshbandhu College, University of Delhi, New Delhi 110019, India
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Aayush Arya
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Department of Physics, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144001, India
| | - Romulo Cruz
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Big Data Laboratory, Information and Communications Technology Center (CTIC), National University of Engineering, Amaru 210, Lima 15333, Peru
| | - Henderson James Cleaves II
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|