1
|
Tang J, Sukhanov AA, Wei M, Zhang X, Zhao J, Dick B, Voronkova VK, Li MD. Thionated Coumarins: Study of the Intersystem Crossing and the Zero-field Splitting of the Triplet State Using Time-Resolved Transient Optical and Electron Paramagnetic Resonance Spectroscopies. Chemistry 2025; 31:e202404589. [PMID: 40040377 DOI: 10.1002/chem.202404589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/06/2025]
Abstract
To study the effect of thionation of the carbonyl groups in a chromophore, i. e. replacing the O atom with S atom, on the photophysics, we studied two thionated coumarin derivatives (Cou-S and Cou-6-S) with various steady state and transient spectroscopic methods. Both compounds exhibit red-shifted absorption (up to 4900 cm-1) and strong fluorescence quenching as compared to the unthionated analogues. Femtosecond transient absorption spectra show fast ISC (ca. 10 ps) in the thionated coumarin derivatives, while negligible ISC was observed in the unthionated coumarin. Interestingly, triplet excited state lifetimes of the thionated coumarin (0.14 μs) is much shorter than the unthionated analogues (53.4 μs). Time-resolved electron paramagnetic resonance (TREPR) spectra indicate much larger zero field splitting (ZFS) D parameters (up to 0.287 cm-1) for the T1 state of the thionated coumarins than the unthionated analogues (D=0.1001 cm-1). This large D value is attributed to the strong spin orbital coupling effect. These results demonstrate the advantage and the drawback of thionation-enhanced ISC, i. e. the ISC is efficient, but triplet state lifetimes become substantially shorter. This information is useful for the future design of heavy atom-free triplet photosensitizers for photodynamic therapy, photon upconversion, photocatalytic organic synthesis and photopolymerization, etc.
Collapse
Affiliation(s)
- Jieyu Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Min Wei
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-, 93053, Regensburg, Germany
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| |
Collapse
|
2
|
Nishimoto Y. Analytic First-Order Derivatives of CASPT2 Combined with the Polarizable Continuum Model. J Chem Theory Comput 2025; 21:730-746. [PMID: 39818819 DOI: 10.1021/acs.jctc.4c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The complete active space second-order perturbation theory (CASPT2) is valuable for accurately predicting electronic structures and transition energies. However, optimizing molecular geometries in the solution phase has proven challenging. In this study, we develop analytic first-order derivatives of CASPT2 using an implicit solvation model, specifically the polarizable continuum model, within the open-source package OpenMolcas. Analytic gradients and nonadiabatic coupling vectors are computed by solving a modified Z-vector equation. Comparisons with existing theoretical and experimental results demonstrate that the solvent effects can be qualitatively captured using the developed method.
Collapse
Affiliation(s)
- Yoshio Nishimoto
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Liu S, Lee Y, Chen L, Deng J, Ma T, Barbatti M, Bai S. Unexpected longer T 1 lifetime of 6-sulfur guanine than 6-selenium guanine: the solvent effect of hydrogen bonds to brake the triplet decay. Phys Chem Chem Phys 2024; 26:13965-13972. [PMID: 38669188 PMCID: PMC11078201 DOI: 10.1039/d4cp00875h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
The decay of the T1 state to the ground state is an essential property of photosensitizers because it decides the lifetime of excited states and, thus, the time window for sensitization. The sulfur/selenium substitution of carbonyl groups can red-shift absorption spectra and enhance the triplet yield because of the large spin-orbit coupling, modifying nucleobases to potential photosensitizers for various applications. However, replacing sulfur with selenium will also cause a much shorter T1 lifetime. Experimental studies found that the triplet decay rate of 6-seleno guanine (6SeGua) is 835 times faster than that of 6-thio guanine (6tGua) in aqueous solution. In this work, we reveal the mechanism of the T1 decay difference between 6SeGua and 6tGua by computing the activation energy and spin-orbit coupling for rate calculation. The solvent effect of water is treated with explicit microsolvation and implicit solvent models. We find that the hydrogen bond between the sulfur atom of 6tGua and the water molecule can brake the triplet decay, which is weaker in 6SeGua. This difference is crucial to explain the relatively long T1 lifetime of 6tGua in an aqueous solution. This insight emphasizes the role of solvents in modulating the excited state dynamics and the efficiency of photosensitizers, particularly in aqueous environments.
Collapse
Affiliation(s)
- Shaoting Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuhsuan Lee
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingfang Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingheng Deng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tongmei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France.
- Institut Universitaire de France, Paris 75231, France
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Chang XP, Wang JL, Peng LY, Cen XJ, Yin BW, Xie BB. Mechanistic photophysics of tellurium-substituted cytosine: Electronic structure calculations and nonadiabatic dynamics simulations. Photochem Photobiol 2024; 100:339-354. [PMID: 37435854 DOI: 10.1111/php.13835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Previously, the MS-CASPT2 method was performed to study the static and qualitative photophysics of tellurium-substituted cytosine (TeC). To get quantitative information, we used our recently developed QTMF-FSSH dynamics method to simulate the excited-state decay of TeC. The CASSCF method was adopted to reduce the calculation costs, which was confirmed to provide reliable structures and energies as those of MS-CASPT2. A detailed structural analysis showed that only 5% trajectories will hop to the lower triplet or singlet state via the twisted (S2 /S1 /T2 )T intersection, while 67% trajectories will choose the planar intersections of (S2 /S1 /T3 /T2 /T1 )P and (S2 /S1 /T2 /T1 )P but subsequently become twisted in other electronic states. By contrast, ~28% trajectories will maintain in a plane throughout dynamics. Electronic population revealed that the S2 population will ultrafast transfer to the lower triplet or singlet state. Later, the TeC system will populate in the spin-mixed electronic states composed of S1 , T1 and T2 . At the end of 300 fs, most trajectories (~74%) will decay to the ground state and only 17.4% will survive in the triplet states. Our dynamics simulation verified that tellurium substitution will enhance the intersystem crossings, but the very short triplet lifetime (ca. 125 fs) will make TeC a less effective photosensitizer.
Collapse
Affiliation(s)
- Xue-Ping Chang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | - Jie-Lei Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Xu-Jiang Cen
- Ningbo Zhongtian Engineering Co., Ltd., Ningbo, China
| | - Bo-Wen Yin
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| |
Collapse
|
5
|
Abdelgawwad AMA, Roca-Sanjuán D, Francés-Monerris A. Electronic spectroscopy of gemcitabine and derivatives for possible dual-action photodynamic therapy applications. J Chem Phys 2023; 159:224106. [PMID: 38078522 DOI: 10.1063/5.0170949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
In this paper, we explore the molecular basis of combining photodynamic therapy (PDT), a light-triggered targeted anticancer therapy, with the traditional chemotherapeutic properties of the well-known cytotoxic agent gemcitabine. A photosensitizer prerequisite is significant absorption of biocompatible light in the visible/near IR range, ideally between 600 and 1000 nm. We use highly accurate multiconfigurational CASSCF/MS-CASPT2/MM and TD-DFT methodologies to determine the absorption properties of a series of gemcitabine derivatives with the goal of red-shifting the UV absorption band toward the visible region and facilitating triplet state population. The choice of the substitutions and, thus, the rational design is based on important biochemical criteria and on derivatives whose synthesis is reported in the literature. The modifications tackled in this paper consist of: (i) substitution of the oxygen atom at O2 position with heavier atoms (O → S and O → Se) to red shift the absorption band and increase the spin-orbit coupling, (ii) addition of a lipophilic chain at the N7 position to enhance transport into cancer cells and slow down gemcitabine metabolism, and (iii) attachment of aromatic systems at C5 position to enhance red shift further. Results indicate that the combination of these three chemical modifications markedly shifts the absorption spectrum toward the 500 nm region and beyond and drastically increases spin-orbit coupling values, two key PDT requirements. The obtained theoretical predictions encourage biological studies to further develop this anticancer approach.
Collapse
Affiliation(s)
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular, Universitat de València, 46071 València, Spain
| | | |
Collapse
|
6
|
Beal R, Valverde D, Gonçalvez PFB, Borin AC. Photophysics of tz Adenine and tz Guanine fluorescent nucleobases embedded into DNA and RNA. J Comput Chem 2023; 44:2246-2255. [PMID: 37486177 DOI: 10.1002/jcc.27194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
UV-VIS photoinduced events of tz A and tz G embedded into DNA and RNA are described by combining the Extended Multi-State Second-Order Perturbation Theory (XMS-CASPT2) and electrostatic embedding molecular mechanics methods (QM/MM). Our results point out that the S1 1 (ππ* La ) state is the bright state in both environments. After the photoexcitation to the S1 1 (ππ* La ) state, the electronic population evolves barrierless towards its minimum, from where the excess of energy can be dissipated by fluorescence. As the minimum energy crossing point structure between the ground and first bright states lies in a high-energy region, the direct internal conversion to the ground state is an unviable mechanism. Other spectroscopic properties (for instance, absorption and Stokes shifts) and comparisons with photochemical properties of canonical nucleobases are also provided.
Collapse
Affiliation(s)
- Roiney Beal
- Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Danillo Valverde
- Unité de Chimie Physique Théorique et Structurale, Namur Institute of Structured Matter, Université de Namur, Namur, Belgium
| | - Paulo F B Gonçalvez
- Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Xie M, Ren SX, Hu D, Zhong JM, Luo J, Tan Y, Li YP, Si LP, Cao J. The impact of the chalcogen-substitution element and initial spectroscopic state on excited-state relaxation pathways in nucleobase photosensitizers: a combination of static and dynamic studies. Phys Chem Chem Phys 2023; 25:27756-27765. [PMID: 37814579 DOI: 10.1039/d3cp03730d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The substitution of oxygen with chalcogen in carbonyl group(s) of canonical nucleobases gives an impressive triplet generation, enabling their promising applications in medicine and other emerging techniques. The excited-state relaxation S2(ππ*) → S1(nπ*) → T1(ππ*) has been considered the preferred path for triplet generation in these nucleobase derivatives. Here, we demonstrate enhanced quantum efficiency of direct intersystem crossing from S2 to triplet manifold upon substitution with heavier chalcogen elements. The excited-state relaxation dynamics of sulfur/selenium substituted guanines in a vacuum is investigated using a combination of static quantum chemical calculations and on-the-fly excited-state molecular dynamics simulations. We find that in sulfur-substitution the S2 state predominantly decays to the S1 state, while upon selenium-substitution the S2 state deactivation leads to simultaneous population of the S1 and T2,3 states in the same time scale and multi-state quasi-degeneracy region S2/S1/T2,3. Interestingly, the ultrafast deactivation of the spectroscopic S3 state of both studied molecules to the S1 state occurs through a successive S3 → S2 → S1 path involving a multi-state quasi-degeneracy S3/S2/S1. The populated S1 and T2 states will cross the lowest triplet state, and the S1 → T intersystem crossing happens in a multi-state quasi-degeneracy region S1/T2,3/T1 and is accelerated by selenium-substitution. The present study reveals the influence of both the chalcogen substitution element and initial spectroscopic state on the excited-state relaxation mechanism of nucleobase photosensitizers and also highlights the important role of multi-state quasi-degeneracy in mediating the complex relaxation process. These theoretical results provide additional insights into the intrinsic photophysics of nucleobase-based photosensitizers and are helpful for designing novel photo-sensitizers for real applications.
Collapse
Affiliation(s)
- Min Xie
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Shuang-Xiao Ren
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Die Hu
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Ji-Meng Zhong
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Jie Luo
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Yin Tan
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Yan-Ping Li
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Li-Ping Si
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Jun Cao
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, Guizhou, 550018, P. R. China.
| |
Collapse
|
8
|
Pracht P, Bannwarth C. Finding Excited-State Minimum Energy Crossing Points on a Budget: Non-Self-Consistent Tight-Binding Methods. J Phys Chem Lett 2023; 14:4440-4448. [PMID: 37144783 DOI: 10.1021/acs.jpclett.3c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The automated exploration and identification of minimum energy conical intersections (MECIs) is a valuable computational strategy for the study of photochemical processes. Due to the immense computational effort involved in calculating non-adiabatic derivative coupling vectors, simplifications have been introduced focusing instead on minimum energy crossing points (MECPs), where promising attempts were made with semiempirical quantum mechanical methods. A simplified treatment for describing crossing points between almost arbitrary diabatic states based on a non-self-consistent extended tight-binding method, GFN0-xTB, is presented. Involving only a single diagonalization of the Hamiltonian, the method can provide energies and gradients for multiple electronic states, which can be used in a derivative coupling-vector-free scheme to calculate MECPs. By comparison with high-lying MECIs of benchmark systems, it is demonstrated that the identified geometries are good starting points for further MECI refinement with ab initio methods.
Collapse
Affiliation(s)
- Philipp Pracht
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christoph Bannwarth
- Institute for Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52074 Aachen, Germany
| |
Collapse
|
9
|
Prejanò M, Alberto ME, De Simone BC, Marino T, Toscano M, Russo N. Sulphur- and Selenium-for-Oxygen Replacement as a Strategy to Obtain Dual Type I/Type II Photosensitizers for Photodynamic Therapy. Molecules 2023; 28:molecules28073153. [PMID: 37049916 PMCID: PMC10095929 DOI: 10.3390/molecules28073153] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The effect on the photophysical properties of sulfur- and selenium-for-oxygen replacement in the skeleton of the oxo-4-dimethylaminonaphthalimide molecule (DMNP) has been explored at the density functional (DFT) level of theory. Structural parameters, excitation energies, singlet–triplet energy gaps (ΔES-T), and spin–orbit coupling constants (SOC) have been computed. The determined SOCs indicate an enhanced probability of intersystem crossing (ISC) in both the thio- and seleno-derivatives (SDMNP and SeDMNP, respectively) and, consequently, an enhancement of the singlet oxygen quantum yields. Inspection of Type I reactions reveals that the electron transfer mechanisms leading to the generation of superoxide is feasible for all the compounds, suggesting a dual Type I/Type II activity.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Marta Erminia Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Bruna Clara De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
10
|
Krul SE, Costa GJ, Hoehn SJ, Valverde D, Oliveira LMF, Borin AC, Crespo-Hernández CE. Resolving Ultrafast Photoinitiated Dynamics of the Hachimoji 5-Aza-7-Deazaguanine Nucleobase: Impact of Synthetically Expanding the Genetic Alphabet. Photochem Photobiol 2022; 99:693-705. [PMID: 35938218 DOI: 10.1111/php.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
The guanine derivative, 5-aza-7-deazaguanine (5N7C G) has recently been proposed as one of four unnatural bases, termed Hachimoji (8-letter) to expand the genetic code. We apply steady-state and time-resolved spectroscopy to investigate its electronic relaxation mechanism and probe the effect of atom substitution on the relaxation mechanism in polar protic and polar aprotic solvents. Mapping of the excited state potential energy surfaces is performed, from which the critical points are optimized by using the state-of-art Extended Multi-State Complete Active Space Second-Order Perturbation Theory. It is demonstrated that excitation to the lowest energy 1 ππ* state of 5N7C G results in complex dynamics leading to ca. 10 to 30-fold slower relaxation (depending on solvent) compared to guanine. A significant conformational change occurs at the S1 minimum, resulting in a 10-fold greater fluorescence quantum yield compared to guanine. The fluorescence quantum yield and S1 decay lifetime increase going from water to acetonitrile to propanol. The solvent-dependent results are supported by the quantum chemical calculations showing an increase in the energy barrier between the S1 minimum and the S1 /S0 conical intersection going from water to propanol. The longer lifetimes might make 5N7C G more photochemical active to adjacent nucleobases than guanine or other nucleobases within DNA.
Collapse
Affiliation(s)
- Sarah E Krul
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| | - Gustavo J Costa
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| | - Danillo Valverde
- Unité de Chimie Physique Theorique et Structurale, Namur Institute of Structured Matter, Université de Namur, B-5000, Namur, Belgium
| | - Leonardo M F Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Carlos E Crespo-Hernández
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| |
Collapse
|
11
|
Valverde D, Mai S, Canuto S, Borin AC, González L. Ultrafast Intersystem Crossing Dynamics of 6-Selenoguanine in Water. JACS AU 2022; 2:1699-1711. [PMID: 35911449 PMCID: PMC9327080 DOI: 10.1021/jacsau.2c00250] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rationalizing the photochemistry of nucleobases where an oxygen is replaced by a heavier atom is essential for applications that exploit near-unity triplet quantum yields. Herein, we report on the ultrafast excited-state deactivation mechanism of 6-selenoguanine (6SeGua) in water by combining nonadiabatic trajectory surface-hopping dynamics with an electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) scheme. We find that the predominant relaxation mechanism after irradiation starts on the bright singlet S2 state that converts internally to the dark S1 state, from which the population is transferred to the triplet T2 state via intersystem crossing and finally to the lowest T1 state. This S2 → S1 → T2 → T1 deactivation pathway is similar to that observed for the lighter 6-thioguanine (6tGua) analogue, but counterintuitively, the T1 lifetime of the heavier 6SeGua is shorter than that of 6tGua. This fact is explained by the smaller activation barrier to reach the T1/S0 crossing point and the larger spin-orbit couplings of 6SeGua compared to 6tGua. From the dynamical simulations, we also calculate transient absorption spectra (TAS), which provide two time constants (τ1 = 131 fs and τ2 = 191 fs) that are in excellent agreement with the experimentally reported value (τexp = 130 ± 50 fs) (Farrel et al. J. Am. Chem. Soc. 2018, 140, 11214). Intersystem crossing itself is calculated to occur with a time scale of 452 ± 38 fs, highlighting that the TAS is the result of a complex average of signals coming from different nonradiative processes and not intersystem crossing alone.
Collapse
Affiliation(s)
- Danillo Valverde
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo CEP 05508-000, Brazil
- Institute
of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo CEP 05508-090, Brazil
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| | - Sylvio Canuto
- Institute
of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo CEP 05508-090, Brazil
| | - Antonio Carlos Borin
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo CEP 05508-000, Brazil
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| |
Collapse
|
12
|
Chang XP, Yu L, Zhang TS, Cui G. Quantum mechanics/molecular mechanics studies on the mechanistic photophysics of sunscreen oxybenzone in methanol solution. Phys Chem Chem Phys 2022; 24:13293-13304. [PMID: 35607908 DOI: 10.1039/d2cp01263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we have employed the QM(CASPT2//CASSCF)/MM method to explore the photophysical and photochemical mechanism of oxybenzone (OB) in methanol solution. Based on the optimized minima, conical intersections and crossing points, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decay paths in the 1ππ*, 1nπ*, 3ππ*, 3nπ*, and S0 states, we have identified several feasible excited-state relaxation pathways for the initially populated S2(1ππ*) state to decay to the initial enol isomer' S0 state. The major one is the singlet-mediated and stretch-torsion coupled ESIPT pathway, in which the system first undergoes an essentially barrierless 1ππ* ESIPT process to generate the 1ππ* keto species, and finally realizes its ground state recovery through the subsequent carbonyl stretch-torsion facilitating S1 → S0 internal conversion (IC) and the reverse ground-state intramolecular proton transfer (GSIPT) process. The minor ones are related to intersystem crossing (ISC) processes. At the S2(1ππ*) minimum, an S2(1ππ*)/S1(1nπ*)/T2(3nπ*) three-state intersection region helps the S2 system branch into the T1 state through a S2 → S1 → T1 or S2 → T2 → T1 process. Once it has reached the T1 state, the system may relax to the S0 state via direct ISC or via subsequent nearly barrierless 3ππ* ESIPT to yield the T1 keto tautomer and ISC. The resultant S0 keto species significantly undergoes reverse GSIPT and only a small fraction yields the trans-keto form that relaxes back more slowly. However, due to small spin-orbit couplings at T1/S0 crossing points, the ISC to S0 state occurs very slowly. The present work rationalizes not only the ultrafast excited-state decay dynamics of OB but also its phosphorescence emission at low temperature.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Li Yu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Chang XP, Zhang TS, Cui G. Theoretical Studies on the Excited-State Decay Mechanism of Homomenthyl Salicylate in a Gas Phase and an Acetonitrile Solution. J Phys Chem A 2021; 126:16-28. [PMID: 34963284 DOI: 10.1021/acs.jpca.1c07108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we employ the CASPT2//CASSCF and QM(CASPT2//CASSCF)/MM approaches to explore the photochemical mechanism of homomenthyl salicylate (HMS) in vacuum and an acetonitrile solution. The results show that in both cases, the excited-state relaxation mainly involves a spectroscopically "bright" S1(1ππ*) state and the lower-lying T1 and T2 states. In the major relaxation pathway, the photoexcited S1 keto system first undergoes an essentially barrierless excited-state intramolecular proton transfer (ESIPT) to generate the S1 enol minimum, near which a favorable S1/S0 conical intersection decays the system to the S0 state followed by a reverse ground-state intramolecular proton transfer (GSIPT) to repopulate the initial S0 keto species. In the minor one, an S1/T2/T1 three-state intersection in the keto region makes the T1 state populated via direct and T2-mediated intersystem crossing (ISC) processes. In the T1 state, an ESIPT occurs, which is followed by ISC near a T1/S0 crossing point in the enol region to the S0 state and finally back to the S0 keto species. In addition, a T1/S0 crossing point near the T1 keto minimum can also help the system decay to the S0 keto species. However, small spin-orbit couplings between T1 and S0 at these T1/S0 crossing points make ISC to the S0 state very slow and make the system trapped in the T1 state for a while. The present work rationalizes not only the ultrafast excited-state decay dynamics of HMS but also its low quantum yield of phosphorescence at 77 K.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
14
|
Xie BB, Tang XF, Liu XY, Chang XP, Cui G. Mechanistic photophysics and photochemistry of unnatural bases and sunscreen molecules: insights from electronic structure calculations. Phys Chem Chem Phys 2021; 23:27124-27149. [PMID: 34849517 DOI: 10.1039/d1cp03994f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photophysics and photochemistry are basic subjects in the study of light-matter interactions and are ubiquitous in diverse fields such as biology, energy, materials, and environment. A full understanding of mechanistic photophysics and photochemistry underpins many recent advances and applications. This contribution first provides a short discussion on the theoretical calculation methods we have used in relevant studies, then we introduce our latest progress on the mechanistic photophysics and photochemistry of two classes of molecular systems, namely unnatural bases and sunscreens. For unnatural bases, we disclose the intrinsic driving forces for the ultrafast population to reactive triplet states, impacts of the position and degree of chalcogen substitutions, and the effects of complex environments. For sunscreen molecules, we reveal the photoprotection mechanisms that dissipate excess photon energy to the surroundings by ultrafast internal conversion to the ground state. Finally, relevant theoretical challenges and outlooks are discussed.
Collapse
Affiliation(s)
- Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Xiu-Fang Tang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
15
|
Zhu YH, Tang XF, Chang XP, Zhang TS, Xie BB, Cui G. Mechanistic Photophysics of Tellurium-Substituted Uracils: Insights from Multistate Complete-Active-Space Second-Order Perturbation Calculations. J Phys Chem A 2021; 125:8816-8826. [PMID: 34606278 DOI: 10.1021/acs.jpca.1c06169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The photophysical mechanisms of tellurium-substituted uracils were studied at the multistate complete-active-space second-order perturbation level with a particular focus on how the position and number of tellurium substitutions affect their nonadiabatic relaxation processes. Electronic structure analysis reveals that the lowest several excited states are closely concerned with the n and π orbitals at the Te7-C2 [Te8-C4] moiety of 2-tellurouracil (2TeU) [4TeU and 24TeU]. Both planar and twisted minima were optimized for 2TeU, whereas only planar ones were obtained for 4TeU and 24TeU, except for a twisted T1 minimum of 4TeU. Based on intersection structures and linearly interpolated internal coordinate paths, we proposed several feasible excited-state deactivation paths. It is found that the relaxation channels for 2TeU are more complicated than those of 4TeU and 24TeU. The electronic population transfer to the T1 state for 2TeU is easier than that for 4TeU and 24TeU in consideration of the barrier heights from the S2 Franck-Condon point to the S2/S1 or S2/T2 intersections. In addition, the recovery of the ground state from the T1 state for 2TeU will be more efficient than that for the other two systems as well.
Collapse
Affiliation(s)
- Yun-Hua Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiu-Fang Tang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P R. China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
16
|
Valverde D, de Araújo AVS, Borin AC. Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil. Molecules 2021; 26:5191. [PMID: 34500625 PMCID: PMC8434193 DOI: 10.3390/molecules26175191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
The photophysical relaxation mechanisms of 1-cyclohexyluracil, in vacuum and water, were investigated by employing the Multi-State CASPT2 (MS-CASPT2, Multi-State Complete Active-Space Second-Order Perturbation Theory) quantum chemical method and Dunning's cc-pVDZ basis sets. In both environments, our results suggest that the primary photophysical event is the population of the S11(ππ*) bright state. Afterwards, two likely deactivation pathways can take place, which is sustained by linear interpolation in internal coordinates defined via Z-Matrix scans connecting the most important characteristic points. The first one (Route 1) is the same relaxation mechanism observed for uracil, its canonical analogue, i.e., internal conversion to the ground state through an ethylenic-like conical intersection. The other route (Route 2) is the direct population transfer from the S11(ππ*) bright state to the T23(nπ*) triplet state via an intersystem crossing process involving the (S11(ππ*)/T23(nπ*))STCP singlet-triplet crossing point. As the spin-orbit coupling is not too large in either environment, we propose that most of the electronic population initially on the S11(ππ*) state returns to the ground following the same ultrafast deactivation mechanism observed in uracil (Route 1), while a smaller percentage goes to the triplet manifold. The presence of a minimum on the S11(ππ*) potential energy hypersurface in water can help to understand why experimentally it is noticed suppression of the triplet states population in polar protic solvent.
Collapse
Affiliation(s)
- Danillo Valverde
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil;
| | | | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil;
| |
Collapse
|
17
|
Zhu YH, Zhang TS, Tang XF, Xie BB, Cui G. MS-CASPT2 studies on the mechanistic photophysics of tellurium-substituted guanine and cytosine. Phys Chem Chem Phys 2021; 23:12421-12430. [PMID: 34028476 DOI: 10.1039/d1cp01142a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfur-substituted nucleobases are highly promising photosensitizers that are widely used in photodynamic therapy, and there are numerous studies exploring their unique photophysical behaviors. However, relevant photophysical investigations on selenium and tellurium substitutions are still rare. Herein, the high-level multistate complete-active-space second-order perturbation (MS-CASPT2) method was performed for the first time to explore the excited-state relaxation processes of tellurium-substituted guanine (TeG) and cytosine (TeC). Based on the electronic state properties in the Franck-Condon (FC) region, we found that the lowest five (S0, S1, S2, T1, and T2) and six (S0, S1, S2, T1, T2 and T3) states will participate in the nonadiabatic transition processes of TeG and TeC systems, respectively. In these electronic states, two kinds of minimum and intersection structures (i.e., planar and twisted structures) were obtained for both TeG and TeC systems. The linearly interpolated internal coordinate (LIIC) paths and spin-orbit coupling (SOC) constants revealed several possible planar and twisted excited-state decay channels, which could lead the systems to the lowest reactive triplet state of T1. Small energy barriers in the T1 state will trap the TeG and TeC systems for a while before they finally populate to the ground state. Although tellurium substitution would further redshift the absorption wavelength and enhance the intersystem crossing (ISC) rate to the T1 state compared with sulfur and selenium substitutions, the rapid ISC process of T1 → S0 may make it a less effective photosensitizer to sensitize the molecular oxygen. We believe our present work will provide important mechanistic insights into the photophysics of tellurium-substituted nucleobases.
Collapse
Affiliation(s)
- Yun-Hua Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Xiu-Fang Tang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
18
|
Valverde D, Mai S, Sanches de Araújo AV, Canuto S, González L, Borin AC. On the population of triplet states of 2-seleno-thymine. Phys Chem Chem Phys 2021; 23:5447-5454. [PMID: 33650609 DOI: 10.1039/d1cp00041a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The population and depopulation mechanisms leading to the lowest-lying triplet states of 2-Se-Thymine were studied at the MS-CASPT2/cc-pVDZ level of theory. Several critical points on different potential energy hypersurfaces were optimized, including minima, conical intersections, and singlet-triplet crossings. The accessibility of all relevant regions on the potential energy hypersurfaces was investigated by means of minimum energy paths and linear interpolation in internal coordinates techniques. Our analysis indicates that, after the population of the bright S2 state in the Franck-Condon region, the first photochemical event is a barrierless evolution towards one of its two minima. After that, three viable photophysical deactivation paths can take place. In one of them, the population in the S2 state is transferred to the T2 state via intersystem crossing and subsequently to the T1 state by internal conversion. Alternatively, the S1 state could be accessed by internal conversion through two distinct conical intersections with S2 state followed by singlet-triplet crossing with the T2 state. The absence of a second minimum on the T1 state and a small energy barrier on pathway along the potential energy surface towards the ground state from the lowest triplet state are attributed as potential reasons to explain why the lifetime of the triplet state of 2-Se-Thymine might be reduced in comparison with its thio-analogue.
Collapse
Affiliation(s)
- Danillo Valverde
- Institute of Physics, University of São Paulo, Rua do Matão 1371. 05508-090, São Paulo, SP, Brazil
| | - Sebastian Mai
- Photonics Institute, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna, Austria and Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | | | - Sylvio Canuto
- Institute of Physics, University of São Paulo, Rua do Matão 1371. 05508-090, São Paulo, SP, Brazil
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748. 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|