1
|
Madhubala D, Mahato R, Saikia K, Patra A, Fernandes PA, Kumar A, Khan MR, Mukherjee AK. Snake Venom-Inspired Novel Peptides Protect Caenorhabditis elegans against Paraquat-Induced Parkinson's Pathology. ACS Chem Neurosci 2025; 16:1275-1296. [PMID: 40096006 DOI: 10.1021/acschemneuro.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
The in vivo protective mechanisms of two low-molecular-mass (∼1.4 kDa) novel custom peptides (CPs) against paraquat-induced neurodegenerative dysfunction in the Caenorhabditis elegans model were deciphered. CPs prevented the paraquat from binding to the nerve ring adjacent to the pharynx in C. elegans (wild-type) by stable and high-affinity binding to the tyrosine-protein kinase receptor CAM-1, resulting in significant inhibition of paraquat-induced toxicity by reducing the production of reactive oxygen species, mitochondrial membrane depolarization, and chemosensory dysfunction. The CPs inhibited paraquat-induced dopaminergic neuron degeneration and alpha-synuclein protein expression, the hallmarks of Parkinson's disease, in transgenic BZ555 and NL5901 strains of C. elegans. Transcriptomic, functional proteomics, and quantitative reverse transcription-polymerase chain reaction analyses show that CPs prevented the increased expression of the genes involved in the skn-1 downstream pathway, thereby restoring paraquat-mediated oxidative stress, apoptosis, and neuronal damage in C. elegans. The ability of CPs to repair paraquat-induced damage was demonstrated by a network of gene expression profiles, illustrating the molecular relationships between the regulatory proteins.
Collapse
Affiliation(s)
- Dev Madhubala
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam 784028, India
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Rosy Mahato
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
- Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Kangkon Saikia
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Aparup Patra
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade De Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, Porto 4169-007, Portugal
| | - Arun Kumar
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Mojibur R Khan
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam 784028, India
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| |
Collapse
|
2
|
Belenichev I, Bukhtiyarova N, Ryzhenko V, Makyeyeva L, Morozova O, Oksenych V, Kamyshnyi O. Methodological Approaches to Experimental Evaluation of Neuroprotective Action of Potential Drugs. Int J Mol Sci 2024; 25:10475. [PMID: 39408802 PMCID: PMC11477376 DOI: 10.3390/ijms251910475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The authors propose a novel approach to a comprehensive evaluation of neuroprotective effects using both in vitro and in vivo methods. This approach allows for the initial screening of numerous newly synthesized chemical compounds and substances from plant and animal sources while saving animal life by reducing the number of animals used in research. In vitro techniques, including mitochondrial suspensions and neuronal cell cultures, enable the assessment of neuroprotective activity, which can be challenging in intact organisms. The preliminary methods help outline the neuroprotection mechanism depending on the neurodestruction agent. The authors have validated a model of acute cerebrovascular accident, which simulates key cerebrovascular phenomena such as reduced cerebral blood flow, energy deficit, glutamate-calcium excitotoxicity, oxidative stress, and early gene expression. A significant advantage of this model is its ability to reproduce the clinical picture of cerebral ischemia: impaired motor activity; signs of neurological deficits (paresis, paralysis, etc.); as well as disturbances in attention, learning, and memory. Crucial to this approach is the selection of biochemical, molecular, and cellular markers to evaluate nerve tissue damage and characterize potential neuroprotective agents. Additionally, a comprehensive set of molecular, biochemical, histological, and immunohistochemical methods is proposed for evaluating neuroprotective effects and underlying mechanisms of potential pharmaceutical compounds.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Lyudmyla Makyeyeva
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Oksana Morozova
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
3
|
Menezes L, Sampaio RMSN, Meurer L, Szpoganicz B, Cervo R, Cargnelutti R, Wang L, Yang J, Prabhakar R, Fernandes C, Horn A. A Multipurpose Metallophore and Its Copper Complexes with Diverse Catalytic Antioxidant Properties to Deal with Metal and Oxidative Stress Disorders: A Combined Experimental, Theoretical, and In Vitro Study. Inorg Chem 2024; 63:14827-14850. [PMID: 39078252 PMCID: PMC11323273 DOI: 10.1021/acs.inorgchem.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
We report the discovery that the molecule 1-(pyridin-2-ylmethylamino)propan-2-ol (HL) can reduce oxidative stress in neuronal C6 glioma cells exposed to reactive oxygen species (O2-•, H2O2, and •OH) and metal (Cu+) stress conditions. Furthermore, its association with Cu2+ generates [Cu(HL)Cl2] (1) and [Cu(HL)2](ClO4)2 (2) complexes that also exhibit antioxidant properties. Potentiometric titration data show that HL can coordinate to Cu2+ in 1:1 and 1:2 Cu2+:ligand ratios, which was confirmed by monocrystal X-ray studies. The subsequent ultraviolet-visible, electrospray ionization mass spectrometry, and electron paramagnetic resonance experiments show that they can decompose a variety of reactive oxygen species (ROS). Kinetic studies revealed that 1 and 2 mimic the superoxide dismutase and catalase activities. Complex 1 promotes the fastest decomposition of H2O2 (kobs = 2.32 × 107 M-1 s-1), efficiently dismutases the superoxide anion (kcat = 3.08 × 107 M-1 s-1), and scavenges the hydroxyl radical (RSA50 = 25.7 × 10-6 M). Density functional theory calculations support the formation of dinuclear Cu-peroxide and mononuclear Cu-superoxide species in the reactions of [Cu(HL)Cl2] with H2O2 and O2•-, respectively. Furthermore, both 1 and 2 also reduce the oxidative stress of neuronal glioma C6 cells exposed to different ROS, including O2•- and •OH.
Collapse
Affiliation(s)
- Lucas
B. Menezes
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Raquel M. S. N. Sampaio
- Laboratório
de Ciências Químicas, Universidade
Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Lino Meurer
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Bruno Szpoganicz
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rodrigo Cervo
- Departamento
de Química, Universidade Federal
de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Roberta Cargnelutti
- Departamento
de Química, Universidade Federal
de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Lukun Wang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Jiawen Yang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Christiane Fernandes
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Adolfo Horn
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
4
|
Singh K, Kaur A, Goyal B, Goyal D. Harnessing the Therapeutic Potential of Peptides for Synergistic Treatment of Alzheimer's Disease by Targeting Aβ Aggregation, Metal-Mediated Aβ Aggregation, Cholinesterase, Tau Degradation, and Oxidative Stress. ACS Chem Neurosci 2024; 15:2545-2564. [PMID: 38979773 DOI: 10.1021/acschemneuro.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disease and remains a formidable global health challenge. The current medication for AD gives symptomatic relief and, thus, urges us to look for alternative disease-modifying therapies based on a multitarget directed approach. Looking at the remarkable progress made in peptide drug development in the last decade and the benefits associated with peptides, they offer valuable chemotypes [multitarget directed ligands (MTDLs)] as AD therapeutics. This review recapitulates the current developments made in harnessing peptides as MTDLs in combating AD by targeting multiple key pathways involved in the disease's progression. The peptides hold immense potential and represent a convincing avenue in the pursuit of novel AD therapeutics. While hurdles remain, ongoing research offers hope that peptides may eventually provide a multifaceted approach to combat AD.
Collapse
Affiliation(s)
- Kamaljot Singh
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004 Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India
| |
Collapse
|
5
|
Yang Z, Feng R, Zhao H. Cuproptosis and Cu: a new paradigm in cellular death and their role in non-cancerous diseases. Apoptosis 2024:10.1007/s10495-024-01993-y. [PMID: 39014119 DOI: 10.1007/s10495-024-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Cuproptosis, a newly characterized form of regulated cell death driven by copper accumulation, has emerged as a significant mechanism underlying various non-cancerous diseases. This review delves into the complex interplay between copper metabolism and the pathogenesis of conditions such as Wilson's disease (WD), neurodegenerative disorders, and cardiovascular pathologies. We examine the molecular mechanisms by which copper dysregulation induces cuproptosis, highlighting the pivotal roles of key copper transporters and enzymes. Additionally, we evaluate the therapeutic potential of copper chelation strategies, which have shown promise in experimental models by mitigating copper-induced cellular damage and restoring physiological homeostasis. Through a comprehensive synthesis of recent advancements and current knowledge, this review underscores the necessity of further research to translate these findings into clinical applications. The ultimate goal is to harness the therapeutic potential of targeting cuproptosis, thereby improving disease management and patient outcomes in non-cancerous conditions associated with copper dysregulation.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Ridong Feng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine (FAHZU), 79 Qingchun Rd., Shangcheng District, Hangzhou, 330100, Zhejiang, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
6
|
Lv L, Long Z, Tan X, Qin L, Yan W, Zhang H, Ren F, Wang C. Bidirectional two-sample Mendelian randomization analysis identifies causal associations between oxidative stress and Parkinson's disease. Front Aging Neurosci 2024; 16:1423773. [PMID: 39026990 PMCID: PMC11254677 DOI: 10.3389/fnagi.2024.1423773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Background Observational studies have shown that oxidative stress (OS) is associated with Parkinson's disease (PD). However, whether such observations reflect cause-effect remains largely unknown. To test this, we performed a two-sample bidirectional Mendelian randomization (MR) analysis to investigate the causal-effects between OS biomarkers and PD. Methods We selected summary statistics data for single-nucleotide polymorphisms (SNPs) associated with catalase (n = 13), glutathione peroxidases (n = 12), superoxide dismutase (n = 13), vitamin A (n = 7), vitamin C (n = 10), vitamin E (n = 12), vitamin B12 (n = 8), folate (n = 14), copper (n = 6), Zinc (n = 7), and iron (n = 23) levels, and the corresponding data for PD from the International Parkinson Disease Genomics Consortium (IPDGC, 33,674 cases and 449,056 controls). Inverse-variance weighted (IVW) MR analyses were conducted to estimate associations of OS with PD. Reverse MR analysis was further performed to predict the causal effects of PD on the above OS biomarkers. Results As for PD, the IVW method suggested that the Zinc (Zn) levels was significantly associated with PD (OR = 1.107, 95% CI 1.013-1.211; p = 0.025), which is consistent with results from the weighted median analyses. Moreover, the results remained consistent and robust in the sensitivity analysis. However, there were no significant associations of catalase, glutathione peroxidases, superoxide dismutase, vitamin A, vitamin C, vitamin E, vitamin B12, folate, copper, or iron with PD. As for OS, our reverse MR analysis also did not support a causal effect of liability to PD on OS. Conclusion The MR study supported the causal effect of Zn on PD. These findings may inform prevention strategies and interventions directed toward OS and PD.
Collapse
Affiliation(s)
- Lingling Lv
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhe Long
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuling Tan
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lixia Qin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiqian Yan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Feng Ren
- Department of Geriatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
7
|
Xia L, Huang Y, Wang Q, Wang X, Wang Y, Wu J, Li Y. Deciphering biomolecular complexities: the indispensable role of surface-enhanced Raman spectroscopy in modern bioanalytical research. Analyst 2024; 149:2526-2541. [PMID: 38623605 DOI: 10.1039/d4an00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as an indispensable analytical tool in biomolecular research, providing unmatched sensitivity critical for the elucidation of biomolecular structures. This review presents a thorough examination of SERS, outlining its fundamental principles, cataloging its varied applications within the biomolecular sphere, and contemplating its future developmental trajectories. We begin with a detailed analysis of SERS's mechanistic principles, emphasizing both the phenomena of surface enhancement and the complexities inherent in Raman scattering spectroscopy. Subsequently, we delve into the pivotal role of SERS in the structural analysis of diverse biomolecules, including proteins, nucleic acids, lipids, carbohydrates, and biochromes. The remarkable capabilities of SERS extend beyond mere detection, offering profound insights into biomolecular configurations and interactions, thereby enriching our comprehension of intricate biological processes. This review also sheds light on the application of SERS in real-time monitoring of various bio-relevant compounds, from enzymes and coenzymes to metal ion-chelate complexes and cellular organelles, thereby providing a holistic view and empowering researchers to unravel the complexities of biological systems. We also address the current challenges faced by SERS, such as enhancing sensitivity and resolution, developing stable and reproducible substrates, and conducting thorough analyses in complex biological matrices. Nonetheless, the continual advancements in nanotechnology and spectroscopy solidify the standing of SERS as a formidable force in biomolecular research. In conclusion, the versatility and robustness of SERS not only deepen our understanding of biomolecular intricacies but also pave the way for significant developments in medical research, therapeutic innovation, and diagnostic approaches.
Collapse
Affiliation(s)
- Ling Xia
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yujiang Huang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Qiuying Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Xiaotong Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yunpeng Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu, 226019, PR China
| | - Yang Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Finland
| |
Collapse
|
8
|
Hecel A, Garstka K, Kozłowski H, Rowińska-Żyrek M. -HH and -HAAAH motifs act as fishing nets for biologically relevant metal ions in metallopeptides. J Inorg Biochem 2024; 252:112456. [PMID: 38154408 DOI: 10.1016/j.jinorgbio.2023.112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Histidine are one of the most common residues involved in transition metal ion binding in the active sites of metalloenzymes. In order to mimic enzymatic metal binding sites, it is crucial to understand the basic coordination modes of histidine residues, distributed at different positions in the peptide sequence. We show that: (i) the separation of two histidines has a large effect on complex stability - a sequence with adjusting histidine residues forms more stable complexes with Zn(II) than the one in which the residues are separated, while the contrary is observed for Cu(II) complexes, in which amide nitrogens participate in metal binding. No pronounced effect is observed for Ni(II) complexes, where the amides participate in binding at higher pH; (ii) non-coordinating amino acid residues (basic, acidic and aromatic ones) have a significant impact on complex stability; charged and aromatic residues may enhance Zn(II) binding, while the contrary is observed for the amide-binding Cu(II); (iii) cysteine containing sequences are much more effective Zn(II) and Ni(II) binding motifs at pH above 8, while histidine containing ligands are more suitable for effective Zn(II) and Ni(II) binding at lower pH.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland.
| | - Kinga Garstka
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland; Faculty of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland
| | | |
Collapse
|
9
|
Skibska A, Perlikowska R. Natural Plant Materials as a Source of Neuroprotective Peptides. Curr Med Chem 2024; 31:5027-5045. [PMID: 37403392 DOI: 10.2174/0929867331666230703145043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
In many circumstances, some crucial elements of the neuronal defense system fail, slowly leading to neurodegenerative diseases. Activating this natural process by administering exogenous agents to counteract unfavourable changes seems promising. Therefore, looking for neuroprotective therapeutics, we have to focus on compounds that inhibit the primary mechanisms leading to neuronal injuries, e.g., apoptosis, excitotoxicity, oxidative stress, and inflammation. Among many compounds considered neuroprotective agents, protein hydrolysates and peptides derived from natural materials or their synthetic analogues are good candidates. They have several advantages, such as high selectivity and biological activity, a broad range of targets, and high safety profile. This review aims to provide biological activities, the mechanism of action and the functional properties of plant-derived protein hydrolysates and peptides. We focused on their significant role in human health by affecting the nervous system and having neuroprotective and brain-boosting properties, leading to memory and cognitive improving activities. We hope our observation may guide the evaluation of novel peptides with potential neuroprotective effects. Research into neuroprotective peptides may find application in different sectors as ingredients in functional foods or pharmaceuticals to improve human health and prevent diseases.
Collapse
Affiliation(s)
- Agnieszka Skibska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Lodz, Poland
| | - Renata Perlikowska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Lodz, Poland
| |
Collapse
|
10
|
Tam JP, Huang J, Loo S, Li Y, Kam A. Ginsentide-like Coffeetides Isolated from Coffee Waste Are Cell-Penetrating and Metal-Binding Microproteins. Molecules 2023; 28:6556. [PMID: 37764332 PMCID: PMC10538209 DOI: 10.3390/molecules28186556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Coffee processing generates a huge amount of waste that contains many natural products. Here, we report the discovery of a panel of novel cell-penetrating and metal ion-binding microproteins designated coffeetide cC1a-c and cL1-6 from the husk of two popular coffee plants, Coffea canephora and Coffea liberica, respectively. Combining sequence determination and a database search, we show that the prototypic coffeetide cC1a is a 37-residue, eight-cysteine microprotein with a hevein-like cysteine motif, but without a chitin-binding domain. NMR determination of cC1a reveals a compact structure that confers its resistance to heat and proteolytic degradation. Disulfide mapping together with chemical synthesis reveals that cC1a has a ginsentide-like, and not a hevein-like, disulfide connectivity. In addition, transcriptomic analysis showed that the 98-residue micrcoproten-like coffeetide precursor contains a three-domain arrangement, like ginsentide precursors. Molecular modeling, together with experimental validation, revealed a Mg2+ and Fe3+ binding pocket at the N-terminus formed by three glutamic acids. Importantly, cC1a is amphipathic with a continuous stretch of 19 apolar amino acids, which enables its cell penetration to target intracellular proteins, despite being highly negatively charged. Our findings suggest that coffee by-products could provide a source of ginsentide-like bioactive peptides that have the potential to target intracellular proteins.
Collapse
Affiliation(s)
- James P. Tam
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
| | - Jiayi Huang
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
| | - Shining Loo
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yimeng Li
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Antony Kam
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
11
|
Oliveri V. Unveiling the Effects of Copper Ions in the Aggregation of Amyloidogenic Proteins. Molecules 2023; 28:6446. [PMID: 37764220 PMCID: PMC10537474 DOI: 10.3390/molecules28186446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Amyloid diseases have become a global concern due to their increasing prevalence. Transition metals, including copper, can affect the aggregation of the pathological proteins involved in these diseases. Copper ions play vital roles in organisms, but the disruption of their homeostasis can negatively impact neuronal function and contribute to amyloid diseases with toxic protein aggregates, oxidative stress, mitochondrial dysfunction, impaired cellular signaling, inflammation, and cell death. Gaining insight into the imbalance of copper ions and its impact on protein folding and aggregation is crucial for developing focused therapies. This review examines the influence of copper ions on significant amyloid proteins/peptides, offering a comprehensive overview of the current understanding in this field.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A Doria 6, 95125 Catania, Italy
| |
Collapse
|
12
|
Hassan F, Saleem A, Samuel SS, Sarfraz Z, Sarfraz A, Sarfraz M, KC M. Neurokinin 1/3 receptor antagonists for menopausal women: A current systematic review and insights into the investigational non-hormonal therapy. Medicine (Baltimore) 2023; 102:e33978. [PMID: 37335635 PMCID: PMC10256371 DOI: 10.1097/md.0000000000033978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Over 75% of menopausal women experience vasomotor symptoms (VMS), such as night sweats and hot flashes. Despite the prevalence of these symptoms, there is limited data on non-hormonal therapies to alleviate them. METHODS PubMed, Cochrane, Scopus, Ovid, Web of Science, and ClinicalTrials.Gov were searched for relevant studies. The search was performed using the following keywords, which were customized to suit the specific databases/registers: menopause, women, neurokinin 3, and/or Fezolinetant. The search was conducted until December 20, 2022. This systematic review was conducted in compliance with the PRISMA Statement 2020 guidelines. RESULTS A total of 326 records were found, with 10 studies (enrolling 1993 women) selected for inclusion. The women received 40-mg doses of NK1/3 receptor antagonists twice daily, with follow-ups at 1 to 3 weeks. Moderately strong evidence was found suggesting that NK1/3 receptor antagonists can help limit the frequency and severity of hot flashes in menopausal women. CONCLUSION While the results should be interpreted with caution until further clinical trials validate the efficacy and safety of NK1/3 receptor antagonists among menopausal women, these findings suggest that they are promising targets for future pharmacological and clinical studies in addressing vasomotor symptoms.
Collapse
Affiliation(s)
| | - Anam Saleem
- Punjab Medical College, Faisalabad, Pakistan
| | | | | | | | | | - Manish KC
- KIST Medical College, Lalitpur, Nepal
| |
Collapse
|
13
|
Szczerba K, Stokowa-Soltys K. What Is the Correlation between Preeclampsia and Cancer? The Important Role of Tachykinins and Transition Metal Ions. Pharmaceuticals (Basel) 2023; 16:366. [PMID: 36986466 PMCID: PMC10058266 DOI: 10.3390/ph16030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Metal ions are irreplaceable in many biological processes. They are components of numerous metalloproteins and serve as cofactors or structural elements for enzymes. Interestingly, iron, copper and zinc play important roles in accelerating or preventing neoplastic cell transformation. Noteworthily, a lot of proliferative and invasive mechanisms are exploited by both malignant tumors and pregnancy. Cancer cells, as well as developing placenta cells, create a microenvironment supportive of immunologic privilege and angiogenesis. Therefore, pregnancy and cancer progression share many similarities. Moreover, during preeclampsia and cancer, significant changes in relevant trace element concentrations, tachykinin levels, expressions of neurokinin receptors, oxidative stress and angiogenic imbalance are observed. This sheds a new light on the role of metal ions and tachykinins in cancer progression and pregnancy, especially in preeclamptic women.
Collapse
Affiliation(s)
| | - Kamila Stokowa-Soltys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
14
|
Chaudhari V, Bagwe-Parab S, Buttar HS, Gupta S, Vora A, Kaur G. Challenges and Opportunities of Metal Chelation Therapy in Trace Metals Overload-Induced Alzheimer's Disease. Neurotox Res 2023; 41:270-287. [PMID: 36705861 DOI: 10.1007/s12640-023-00634-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/09/2022] [Accepted: 11/26/2022] [Indexed: 01/28/2023]
Abstract
Essential trace metals like zinc (Zn), iron (Fe), and copper (Cu) play an important physiological role in the metabolomics and healthy functioning of body organs, including the brain. However, abnormal accumulation of trace metals in the brain and dyshomeostasis in the different regions of the brain have emerged as contributing factors in neuronal degeneration, Aβ aggregation, and Tau formation. The link between these essential trace metal ions and the risk of AD has been widely studied, although the conclusions have been ambiguous. Despite the absence of evidence for any clinical benefit, therapeutic chelation is still hypothesized to be a therapeutic option for AD. Furthermore, the parameters like bioavailability, ability to cross the BBB, and chelation specificity must be taken into consideration while selecting a suitable chelation therapy. The data in this review summarizes that the primary intervention in AD is brain metal homeostasis along with brain metal scavenging. This review evaluates the impact of different trace metals (Cu, Zn, Fe) on normal brain functioning and their association with neurodegeneration in AD. Also, it investigates the therapeutic potential of metal chelators in the management of AD. An extensive literature search was carried out on the "Web of Science, PubMed, Science Direct, and Google Scholar" to investigate the effect of trace elements in neurological impairment and the role of metal chelators in AD. In addition, the current review highlights the advantages and limitations of chelation therapies and the difficulties involved in developing selective metal chelation therapy in AD patients.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Siddhi Bagwe-Parab
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Harpal S Buttar
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Ottawa, Ottawa, Canada
| | - Shubhangi Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
15
|
Tufféry P, Derreumaux P. A refined pH-dependent coarse-grained model for peptide structure prediction in aqueous solution. FRONTIERS IN BIOINFORMATICS 2023; 3:1113928. [PMID: 36727106 PMCID: PMC9885153 DOI: 10.3389/fbinf.2023.1113928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
Introduction: Peptides carry out diverse biological functions and the knowledge of the conformational ensemble of polypeptides in various experimental conditions is important for biological applications. All fast dedicated softwares perform well in aqueous solution at neutral pH. Methods: In this study, we go one step beyond by combining the Debye-Hückel formalism for charged-charged amino acid interactions and a coarse-grained potential of the amino acids to treat pH and salt variations. Results: Using the PEP-FOLD framework, we show that our approach performs as well as the machine-leaning AlphaFold2 and TrRosetta methods for 15 well-structured sequences, but shows significant improvement in structure prediction of six poly-charged amino acids and two sequences that have no homologous in the Protein Data Bank, expanding the range of possibilities for the understanding of peptide biological roles and the design of candidate therapeutic peptides.
Collapse
Affiliation(s)
- Pierre Tufféry
- Université Paris Cité, CNRS UMR 8251, INSERM U1133, Paris, France,*Correspondence: Pierre Tufféry,
| | - Philippe Derreumaux
- Université Paris Cité, CNRSUPR9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
16
|
Poudineh M, Ghotbi T, Azizi F, Karami N, Zolfaghari Z, Gheisari F, Hormozi M, Poudineh S. Neuropharmaceutical Properties of Naringin Against Alzheimer's and Parkinson's Diseases: Naringin Protection Against AD and PD. Galen Med J 2022; 11:e2337. [PMID: 36698693 PMCID: PMC9838113 DOI: 10.31661/gmj.v11i.2337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/06/2022] Open
Abstract
Neurological complications are considered the leading cause of disability and the second cause of death worldwide. Although the most common neurological disorders affecting a large population are Alzheimer's (AD) and Parkinson's diseases (PD), no definitive treatment has been propounded in the clinic. As in recent years, special attention has been paid to medicinal herbal products as one of the ways to meet the challenges of treating diseases. This review study aimed to introduce the naringin neuroprotective effects as an abundant flavonoid in grapes and citrus fruits on the most common neurological disorders, including AD and PD. For this purpose, the specified keywords were searched in PubMed, Web of Science, Scopus, Embase, and Google Scholar, and the results were entered into the study after a concise overview. The findings show naringin can confront neurological disorders through several mechanisms such as modulating stress response pathways, preventing apoptosis, oxidative stress, and neuroinflammation, excessive chelating amounts of metal ions, thereby improving cognitive impairment and memory loss induced by neurological disorders. However, further studies, particularly on human, are critical for the final confirmation of obtained findings. [GMJ.2022;11:e2337].
Collapse
Affiliation(s)
| | - Tahere Ghotbi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Science, Shiraz, Iran
| | - Farnoush Azizi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Science, Shiraz, Iran
| | - Nooshin Karami
- Department of Clinical Psychology, Shiraz University of Education and Psychology, Shiraz, Iran
| | - Zahra Zolfaghari
- Department of E Learning in Medical Sciences, Virtual Faculty of Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Hormozi
- Department of Neurodegenerative Diseases and Hertie, Institute for Clinical Brain Research, University of Tuebingen, 72076, Tuebingen, Germany
| | - Sahar Poudineh
- School of Medicine, Mashhad Azad University, Mashhad, Iran
| |
Collapse
|
17
|
Bacchella C, Dell'Acqua S, Nicolis S, Monzani E, Casella L. The reactivity of copper complexes with neuronal peptides promoted by catecholamines and its impact on neurodegeneration. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Wa Tły J, Hecel A, Wieczorek R, Rowińska-Żyrek M, Kozłowski H. Poly-Gly Region Regulates the Accessibility of Metal Binding Sites in Snake Venom Peptides. Inorg Chem 2022; 61:14247-14251. [PMID: 36039984 PMCID: PMC9472272 DOI: 10.1021/acs.inorgchem.2c02584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
It is supposed that the presence of poly-His regions
in close proximity
to poly-Gly domains in snake venoms is related to their biological
activity; poly-His/poly-Gly (pHpG) peptides inhibit the activity of
metalloproteinases during venom storage via the chelation metal ions,
necessary for their proper functioning. This work shows that only
the histidyl residues from the N-terminal VDHDHDH motif (but not from
the poly-His tag) were the primary Zn(II) binding sites and that the
poly-Gly domain situated in the proximity of a central proline residue
may play a regulatory role in venom gland protection. The proline
induces a kink of the peptide, resulting in steric hindrance, which
may modulate the accessibility of potential metal binding sites in
the poly-His domain and may, in turn, be one of the regulators of
Zn(II) accessibility in the venom gland and therefore a modulator
of metalloproteinase activity during venom storage. The proline induces a kink of the peptide, resulting in
a steric hindrance, which may modulate the accessibility of potential
metal binding sites in the poly-His domain and may, in turn, be one
of the regulators of Zn(II) accessibility in the venom gland and therefore
a modulator of metalloproteinase activity during venom storage.
Collapse
Affiliation(s)
- Joanna Wa Tły
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, Wrocław 50-383, Poland
| | - Aleksandra Hecel
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, Wrocław 50-383, Poland
| | - Robert Wieczorek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, Wrocław 50-383, Poland
| | | | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, Wrocław 50-383, Poland.,Institute of Health Sciences, University of Opole, 68 Katowicka Street, Opole 45-060, Poland
| |
Collapse
|
19
|
Prognostic and Functional Analysis of NPY6R in Uveal Melanoma Using Bioinformatics. DISEASE MARKERS 2022; 2022:4143447. [PMID: 35432628 PMCID: PMC9012612 DOI: 10.1155/2022/4143447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/14/2022]
Abstract
Neuropeptides can mediate tumor cell proliferation and differentiation through autocrine, paracrine, neurosecretory, and endocrine mechanisms. This study investigated the expression and prognostic significance of neuropeptide Y receptor Y6 (NPY6R) in uveal melanoma (UVM) and preliminarily investigated the biological function of NPY6R in UVM. NPY6R was poorly expressed in most tumors and was associated with better prognosis in UVM. Among the clinicopathological features of UVM, NPY6R expression was lower in male patients. The area under the curve (AUC) value of NPY6R for the diagnosis of UVM was 0.676 (95% CI: 0.556–0.795). A nomogram including four clinical predictors was constructed. NPY6R expression was significantly associated with features of the UVM immune microenvironment. ESTIMATE and CIBERSORT algorithms were used to calculate the fraction of immune cells and the percentage of infiltration in each patient, respectively. NPY6R expression-related gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analyses were performed. GO and KEGG enrichment analyses revealed that NPY6R-related genes are mainly enriched in pathways and functions related to visual light perception. Gene set enrichment analysis suggested that NPY6R is associated with tumor progression in UVM. NPY6R is involved in the tumor progression of UVM and has a good predictive value as a prognostic marker of UVM.
Collapse
|
20
|
Phytotherapeutic Approaches to the Prevention of Age-Related Changes and the Extension of Active Longevity. Molecules 2022; 27:molecules27072276. [PMID: 35408672 PMCID: PMC9000830 DOI: 10.3390/molecules27072276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Maintaining quality of life with an increase in life expectancy is considered one of the global problems of our time. This review explores the possibility of using natural plant compounds with antioxidant, anti-inflammatory, anti-glycation, and anti-neurodegenerative properties to slow down the onset of age-related changes. Age-related changes such as a decrease in mental abilities, the development of inflammatory processes, and increased risk of developing type 2 diabetes have a significant impact on maintaining quality of life. Herbal preparations can play an essential role in preventing and treating neurodegenerative diseases that accompany age-related changes, including Alzheimer’s and Parkinson’s diseases. Medicinal plants have known sedative, muscle relaxant, neuroprotective, nootropic, and antiparkinsonian properties. The secondary metabolites, mainly polyphenolic compounds, are valuable substances for the development of new anti-inflammatory and hypoglycemic agents. Understanding how mixtures of plants and their biologically active substances work together to achieve a specific biological effect can help develop targeted drugs to prevent diseases associated with aging and age-related changes. Understanding the mechanisms of the biological activity of plant complexes and mixtures determines the prospects for using metabolomic and biochemical methods to prolong active longevity.
Collapse
|
21
|
Duan H, Yin L, Chen T, Qi D, Zhang D. A “metal ions-induced poisoning behavior of biomolecules” inspired polymeric probe for Cu2+ selective detection on basis of coil to helix conformation transition. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
de Melo MMA, Oliveira VDS, de Queiroz Neto MF, Paiva WDS, Torres-Rêgo M, Silva SRB, Pontes DDL, Rocha HAO, de Souza MÂF, da Silva-Júnior AA, Fernandes-Pedrosa MDF. TanP: A Multifunctional Anionic Peptide From Tityus stigmurus Scorpion Venom. Front Mol Biosci 2022; 8:785316. [PMID: 35111812 PMCID: PMC8802776 DOI: 10.3389/fmolb.2021.785316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
Anionic peptides of scorpions are molecules rich in aspartic and/or glutamic acid residues and correspond to a class of peptides without disulfide bonds that are still little explored. TanP is a linear anionic peptide (50 amino acid residues and net charge -20) present in the venom gland of the scorpion, Tityus stigmurus, with chelating properties for Cu2+ ion and immunomodulatory properties. The therapeutic application of chelating molecules is related to cases of acute or chronic intoxication by metals, neurodegenerative diseases, hematological diseases, healing of skin wounds, cardiovascular diseases, and cancer. In this approach, the chelating activity of TanP was evaluated in relation to new metal ions (Fe2+ and Zn2+) of biological importance, as well as its antioxidant, hemostatic, immunomodulatory, and healing potential, aiming to expand the biological and biotechnological potential of this peptide. TanP (25 µM) was able to form stable complexes with Fe2+ in a ratio of 1:5 (TanP: Fe2+). Theoretical results suggest that TanP can work as a sensor to identify and quantify Fe2+ ions. The fluorescence intensity of TanP (1.12 µM) decreased significantly after the addition of Fe2+, obtaining the highest ratio 1: 7.4 (TanP: Fe2+) that led to the lowest fluorescence intensity. For Zn2+, no relevant spectral change was noted. TanP (50 µM) showed a maximum of 3% of hemolytic activity, demonstrating biocompatibility, as well as exhibiting a 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity of above 70% at all the concentrations tested (1-25 μM), and 89.7% iron-chelating activity at 25 μM and 96% hydroxyl radical-scavenging activity at 73.6 μM. In addition, TanP (12.5 and 25 µM) revealed an anticoagulant effect, prolonging the clotting time in prothrombin time and activated partial thromboplastin time assays, with no fibrinogenolytic activity. TanP (12.5 and 25 µM) induced the release of TNF-α by murine macrophages, in the absence of lipopolysaccharides, with a concentration-dependent increase and also stimulated the migration of 3T3 cells in the in vitro healing assay. Thus, TanP revealed a multifunctional potential, being useful as a prototype for the development of new therapeutic and biotechnological agents.
Collapse
Affiliation(s)
- Menilla Maria Alves de Melo
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Verônica da Silva Oliveira
- Laboratory of Coordination Chemistry and Polymers, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Moacir Fernandes de Queiroz Neto
- Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Weslley de Souza Paiva
- Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Manoela Torres-Rêgo
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
- Laboratory of Synthesis and Isolation of Organic Compounds, Chemistry Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Daniel de Lima Pontes
- Laboratory of Coordination Chemistry and Polymers, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
23
|
Smethurst DGJ, Shcherbik N. Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules. J Biol Chem 2021; 297:101374. [PMID: 34732319 PMCID: PMC8633580 DOI: 10.1016/j.jbc.2021.101374] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Metal ions provide considerable functionality across biological systems, and their utilization within biomolecules has adapted through changes in the chemical environment to maintain the activity they facilitate. While ancient earth's atmosphere was rich in iron and manganese and low in oxygen, periods of atmospheric oxygenation significantly altered the availability of certain metal ions, resulting in ion replacement within biomolecules. This adaptation mechanism has given rise to the phenomenon of metal cofactor interchangeability, whereby contemporary proteins and nucleic acids interact with multiple metal ions interchangeably, with different coordinated metals influencing biological activity, stability, and toxic potential. The ability of extant organisms to adapt to fluctuating metal availability remains relevant in a number of crucial biomolecules, including the superoxide dismutases of the antioxidant defense systems and ribonucleotide reductases. These well-studied and ancient enzymes illustrate the potential for metal interchangeability and adaptive utilization. More recently, the ribosome has also been demonstrated to exhibit interchangeable interactions with metal ions with impacts on function, stability, and stress adaptation. Using these and other examples, here we review the biological significance of interchangeable metal ions from a new angle that combines both biochemical and evolutionary viewpoints. The geochemical pressures and chemical properties that underlie biological metal utilization are discussed in the context of their impact on modern disease states and treatments.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| |
Collapse
|
24
|
Lupaescu AV, Mocanu CS, Drochioiu G, Ciobanu CI. Zinc Binding to NAP-Type Neuroprotective Peptides: Nuclear Magnetic Resonance Studies and Molecular Modeling. Pharmaceuticals (Basel) 2021; 14:ph14101011. [PMID: 34681235 PMCID: PMC8541368 DOI: 10.3390/ph14101011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Aggregation of amyloid-β peptides (Aβ) is a hallmark of Alzheimer’s disease (AD), which is affecting an increasing number of people. Hence, there is an urgent need to develop new pharmaceutical treatments which could be used to prevent the AD symptomatology. Activity-dependent neuroprotective protein (ADNP) was found to be deficient in AD, whereas NAP, an 8-amino-acid peptide (1NAPVSIPQ8) derived from ADNP, was shown to enhance cognitive function. The higher tendency of zinc ion to induce Aβ aggregation and formation of amorphous aggregates is also well-known in the scientific literature. Although zinc binding to Aβ peptides was extensively investigated, there is a shortage of knowledge regarding the relationship between NAP peptide and zinc ions. Therefore, here, we investigated the binding of zinc ions to the native NAP peptide and its analog obtained by replacing the serine residue in the NAP sequence with tyrosine (1NAPVYIPQ8) at various molar ratios and pH values by mass spectrometry (MS) and nuclear magnetic resonancespectroscopy (NMR). Matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF) mass spectrometry confirmed the binding of zinc ions to NAP peptides, while the chemical shift of Asp1, observed in 1H-NMR spectra, provided direct evidence for the coordinating role of zinc in the N-terminal region. In addition, molecular modeling has also contributed largely to our understanding of Zn binding to NAP peptides.
Collapse
Affiliation(s)
- Ancuta-Veronica Lupaescu
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Cosmin Stefan Mocanu
- Faculty of Chemistry, Alexandru Ioan Cuza University, 11 Carol I, 700506 Iasi, Romania; (C.S.M.); (G.D.)
| | - Gabi Drochioiu
- Faculty of Chemistry, Alexandru Ioan Cuza University, 11 Carol I, 700506 Iasi, Romania; (C.S.M.); (G.D.)
| | - Catalina-Ionica Ciobanu
- CERNESIM Centre, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
- Correspondence:
| |
Collapse
|