1
|
von Domaros M, Tobias DJ. Molecular Dynamics Simulations of the Interactions of Organic Compounds at Indoor Relevant Surfaces. Annu Rev Phys Chem 2025; 76:231-250. [PMID: 39899840 DOI: 10.1146/annurev-physchem-083122-123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
With markedly different reaction conditions compared to the chemistry of the outside atmosphere, indoor air chemistry poses new challenges to the scientific community that require combined experimental and computational efforts. Here, we review molecular dynamics simulations that have contributed to the mechanistic understanding of the complex dynamics of organic compounds at indoor surfaces and their interplay with experiments and indoor air models. We highlight the rich interactions between volatile organic compounds and silica and titanium dioxide surfaces, serving as proxies for glasses and paints, as well as the dynamics of skin oil lipids and their oxidation products, which sensitively affect the quality of indoor air in crowded environments. As the studies we review here are pioneering in the rapidly emerging field of indoor chemistry, we provide suggestions for increasing the potentially important role that molecular simulations can continue to play.
Collapse
Affiliation(s)
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California, USA;
| |
Collapse
|
2
|
Fankhauser AM, Butman JL, Cooke ME, Fyodorova Y, Liu Y, O'Brien RE, McNeill VF, Geiger FM, Grassian VH, Ault AP. Indoor surface chemistry variability: microspectroscopic analysis of deposited particles in dwellings across the United States. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025. [PMID: 40035181 DOI: 10.1039/d4em00816b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Dwellings across the United States range dramatically with respect to numerous variables (e.g., size, ventilation, and proximity to outdoor sources), and there are considerable uncertainties regarding the heterogeneity in chemical composition and physical properties of indoor particles and surfaces. Stay-at-home orders early in the COVID-19 pandemic led to significant portions of the population spending high fractions of their time at their primary dwelling. Stay-at-HomeChem leveraged a network of indoor chemistry researchers to study indoor air quality and surface chemistry in their homes (March-April 2020). Within this effort, glass microscope slides were deployed in kitchens and other rooms in dwellings across the country for time periods ranging from as short as three hours up to three weeks. Overall, results from 10 occupied homes (15 distinct rooms) showed that collected material on this time scale was primarily deposited particles, rather than thick films, based on optical microscopy and profilometry. Raman microspectroscopy and optical photothermal infrared (O-PTIR) spectroscopy showed that organic modes were dominant, including ν(C-H), δ(C-H), and ν(CO), with minimal contributions from inorganic ions commonly observed in outdoor particulate matter (sulfate, nitrate, or ammonium). Spectral variability within the C-H stretching and fingerprint regions demonstrate differing compositions of deposited particles, often related to cooking activities (e.g., organic particles from cooking oils). Differences within a single dwelling, highlighted that particles from cooking were key contributors in some other rooms, but not all, reinforcing that sources and ventilation likely led to quite distinct surfaces in different rooms. Overall, these results demonstrate the need for real-world measurements to assess the representativeness of assumptions regarding exposure to organic material indoors.
Collapse
Affiliation(s)
- Alison M Fankhauser
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Jana L Butman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, USA.
| | - Madeline E Cooke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Yekaterina Fyodorova
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Yangdongling Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, USA.
| | - Rachel E O'Brien
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23185, USA
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - V Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA.
- Department of Earth and Environmental Sciences, Columbia University, New York, New York 10027, USA
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, USA.
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
3
|
Korotkevich AA, Moll CJ, Versluis J, Bakker HJ. Molecular Orientation of Carboxylate Anions at the Water-Air Interface Studied with Heterodyne-Detected Vibrational Sum-Frequency Generation. J Phys Chem B 2023; 127:4544-4553. [PMID: 36917504 DOI: 10.1021/acs.jpcb.2c08992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The carboxylate anion group plays an important role in many (bio)chemical systems and polymeric materials. In this work, we study the orientation of carboxylate anions with various aliphatic and aromatic substituents at the water-air interface by probing the carboxylate stretch vibrations with heterodyne-detected vibrational sum-frequency generation spectroscopy in different polarization configurations. We find that carboxylate groups with small aliphatic substituents show a large tilt angle with respect to the surface normal and that this angle decreases with increasing size of the substituent. We further use the information about the orientation of the carboxylate group to determine the hyperpolarizability components of this group.
Collapse
Affiliation(s)
| | - Carolyn J Moll
- Ultrafast Spectroscopy, AMOLF, Science Park 104, Amsterdam 1098XG, Netherlands
| | - Jan Versluis
- Ultrafast Spectroscopy, AMOLF, Science Park 104, Amsterdam 1098XG, Netherlands
| | - Huib J Bakker
- Ultrafast Spectroscopy, AMOLF, Science Park 104, Amsterdam 1098XG, Netherlands
| |
Collapse
|
4
|
Butman JL, Thomson RJ, Geiger FM. Unanticipated Hydrophobicity Increases of Squalene and Human Skin Oil Films Upon Ozone Exposure. J Phys Chem B 2022; 126:9417-9423. [PMID: 36331532 DOI: 10.1021/acs.jpcb.2c04849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The C-H and O-H oscillators on the surfaces of thin films of human-derived skin oil and squalene are probed under ambient conditions (300 K, 1 atm total pressure, 40% RH) using second-order vibrational spectroscopy and contact angle goniometry before and after exposure to ppb amounts of ozone. Skin oil and squalene are found to produce different vibrational sum frequency generation spectra in the C-H stretching region, while exposure to ozone results in surface spectra for both materials that is consistent with a loss of C-H oscillators. The measured contact angles show that the hydrophobicity of the films increases following exposure to ozone, consistent with the reduction in C═C···H2O ("πH") bonding interactions that is expected from C═C double bond loss due to ozonolysis and indicating that the polar functional groups formed point toward the films' interiors. Implications for heterogeneous indoor chemistry are discussed.
Collapse
Affiliation(s)
- Jana L Butman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Kowert BA. Diffusion of Squalene in Nonaqueous Solvents. ACS OMEGA 2022; 7:31424-31430. [PMID: 36092635 PMCID: PMC9454272 DOI: 10.1021/acsomega.2c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Capillary flow techniques have been used to determine the translational diffusion constant, D, of squalene in seven alkanes and five cyclohexanes. The alkanes are n-hexane, n-octane, n-decane, n-dodecane, n-tetradecane, 2,2,4,4,6,8,8-heptamethylnonane (isocetane), and 2,6,10,14-tetramethylpentadecane (pristane). The cyclohexanes are cyclohexane, n-butylcyclohexane, n-hexylcyclohexane, n-octylcyclohexane, and n-dodecylcyclohexane. When combined with published data in CD2Cl2, ethyl acetate, n-hexadecane, squalane, n-octane-squalane mixtures, and supercritical CO2, the 35 diffusion constants and viscosities, η, vary by factors of ∼230 and ∼500, respectively. A fit to the modified Stokes-Einstein equation (MSE, D/T = A SE/η p ) gives an average absolute percentage difference (AAPD) of 7.72% between the experimental and calculated D values where p and A SE are constants, T is the absolute temperature, and the AAPD is the average value of (102) (|D calcd - D exptl|/D exptl). Two other MSE fits using subsets of the 35 diffusion constants may be useful for (a) estimating the viscosity of the hydrophobic core of lipid droplets, where squalene is a naturally occurring component, and (b) providing estimates of the D values needed to design extraction processes by which squalene is obtained from plant oils. The Wilke-Chang equation also was considered and found to give larger AAPDs than the corresponding MSE fits.
Collapse
|
6
|
Affiliation(s)
- Franz M Geiger
- Northwestern University, Evanston, Illinois 60208, United States
| | | |
Collapse
|
7
|
Coffaro B, Weisel CP. Reactions and Products of Squalene and Ozone: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7396-7411. [PMID: 35648815 PMCID: PMC9231367 DOI: 10.1021/acs.est.1c07611] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 05/15/2023]
Abstract
This critical review describes the squalene-ozone (SqOz) reaction, or squalene ozonolysis. Ambient ozone penetrates indoors and drives indoor air chemistry. Squalene, a component of human skin oil, contains six carbon-carbon double bonds and is very reactive with ozone. Bioeffluents from people contribute to indoor air chemistry and affect the indoor air quality, resulting in exposures because people spend the majority of their time indoors. The SqOz reaction proceeds through various formation pathways and produces compounds that include aldehydes, ketones, carboxylic acids, and dicarbonyl species, which have a range of volatilities. In this critical review of SqOz chemistry, information on the mechanism of reaction, reaction probability, rate constants, and reaction kinetics are compiled. Characterizations of SqOz reaction products have been done in laboratory experiments and real-world settings. The effect of multiple environmental parameters (ozone concentration, air exchange rate (AER), temperature, and relative humidity (RH)) in indoor settings are summarized. This critical review concludes by identifying the paucity of available exposure, health, and toxicological data for known reaction products. Key knowledge gaps about SqOz reactions leading to indoor exposures and adverse health outcomes are provided as well as an outlook on where the field is headed.
Collapse
Affiliation(s)
- Breann Coffaro
- Environmental
and Health Sciences Institute and Graduate Program in Exposure Science, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| | - Clifford P. Weisel
- Environmental
and Health Sciences Institute and School of Public Health, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| |
Collapse
|
8
|
Zhou Z, Lakey PSJ, von Domaros M, Wise N, Tobias DJ, Shiraiwa M, Abbatt JPD. Multiphase Ozonolysis of Oleic Acid-Based Lipids: Quantitation of Major Products and Kinetic Multilayer Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7716-7728. [PMID: 35671499 DOI: 10.1021/acs.est.2c01163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Commonly found in atmospheric aerosols, cooking oils, and human sebum, unsaturated lipids rapidly decay upon exposure to ozone, following the Criegee mechanism. Here, the gas-surface ozonolysis of three oleic acid-based compounds was studied in a reactor and indoors. Under dry conditions, quantitative product analyses by 1H NMR indicate up to 79% molar yield of stable secondary ozonides (SOZs) in oxidized triolein and methyl oleate coatings. Elevated relative humidity (RH) significantly suppresses the SOZ yields, enhancing the formation of condensed-phase aldehydes and volatile C9 products. Along with kinetic parameters informed by molecular dynamics simulations, these results were used as constraints in a kinetic multilayer model (KM-GAP) simulating triolein ozonolysis. Covering a wide range of coating thicknesses and ozone levels, the model predicts a much faster decay near the gas-lipid interface compared to the bulk. Although the dependence of RH on SOZ yields is well predicted, the model overestimates the production of H2O2 and aldehydes. With negligible dependence on RH, the product composition for oxidized oleic acid is substantially affected by a competitive reaction between Criegee intermediates (CIs) and carboxylic acids. The resulting α-acyloxyalkyl hydroperoxides (α-AAHPs) have much higher molar yields (29-38%) than SOZs (12-16%). Overall, the ozone-lipid chemistry could affect the indoor environment through "crust" accumulation on surfaces and volatile organic compound (VOC) emission. In the atmosphere, the peroxide formation and changes in particle hygroscopicity may have effects on climate. The related health impacts are also discussed.
Collapse
Affiliation(s)
- Zilin Zhou
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Michael von Domaros
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Natsuko Wise
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
9
|
Zeng M, Wilson KR. Experimental evidence that halogen bonding catalyzes the heterogeneous chlorination of alkenes in submicron liquid droplets. Chem Sci 2021; 12:10455-10466. [PMID: 34447538 PMCID: PMC8356749 DOI: 10.1039/d1sc02662c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
A key challenge in predicting the multiphase chemistry of aerosols and droplets is connecting reaction probabilities, observed in an experiment, with the kinetics of individual elementary steps that control the chemistry that occurs across a gas/liquid interface. Here we report evidence that oxygenated molecules accelerate the heterogeneous reaction rate of chlorine gas with an alkene (squalene, Sqe) in submicron droplets. The effective reaction probability for Sqe is sensitive to both the aerosol composition and gas phase environment. In binary aerosol mixtures with 2-decyl-1-tetradecanol, linoleic acid and oleic acid, Sqe reacts 12-23× more rapidly than in a pure aerosol. In contrast, the reactivity of Sqe is diminished by 3× when mixed with an alkane. Additionally, small oxygenated molecules in the gas phase (water, ethanol, acetone, and acetic acid) accelerate (up to 10×) the heterogeneous chlorination rate of Sqe. The overall reaction mechanism is not altered by the presence of these aerosol and gas phase additives, suggesting instead that they act as catalysts. Since the largest rate acceleration occurs in the presence of oxygenated molecules, we conclude that halogen bonding enhances reactivity by slowing the desorption kinetics of Cl2 at the interface, in a way that is analogous to decreasing temperature. These results highlight the importance of relatively weak interactions in controlling the speed of multiphase reactions important for atmospheric and indoor environments.
Collapse
Affiliation(s)
- Meirong Zeng
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
10
|
Guo W, Zou X, Jiang H, Koebke KJ, Hoarau M, Crisci R, Lu T, Wei T, Marsh ENG, Chen Z. Molecular Structure of the Surface-Immobilized Super Uranyl Binding Protein. J Phys Chem B 2021; 125:7706-7716. [PMID: 34254804 DOI: 10.1021/acs.jpcb.1c03849] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, a super uranyl binding protein (SUP) was developed, which exhibits excellent sensitivity/selectivity to bind uranyl ions. It can be immobilized onto a surface in sensing devices to detect uranyl ions. Here, sum frequency generation (SFG) vibrational spectroscopy was applied to probe the interfacial structures of surface-immobilized SUP. The collected SFG spectra were compared to the calculated orientation-dependent SUP SFG spectra using a one-excitonic Hamiltonian approach based on the SUP crystal structures to deduce the most likely surface-immobilized SUP orientation(s). Furthermore, discrete molecular dynamics (DMD) simulation was applied to refine the surface-immobilized SUP conformations and orientations. The immobilized SUP structures calculated from DMD simulations confirmed the SUP orientations obtained from SFG data analyzed based on the crystal structures and were then used for a new round of SFG orientation analysis to more accurately determine the interfacial orientations and conformations of immobilized SUP before and after uranyl ion binding, providing an in-depth understanding of molecular interactions between SUP and the surface and the effect of uranyl ion binding on the SUP interfacial structures. We believe that the developed method of combining SFG measurements, DMD simulation, and Hamiltonian data analysis approach is widely applicable to study biomolecules at solid/liquid interfaces.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Xingquan Zou
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Hanjie Jiang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Karl J Koebke
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Marie Hoarau
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ralph Crisci
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Tao Wei
- Department of Chemical Engineering, Howard University, 2366 Sixth Street, NW, Washington, D.C. 20059, United States
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|