1
|
Chung YH, Oh JK. Research Trends in the Development of Block Copolymer-Based Biosensing Platforms. BIOSENSORS 2024; 14:542. [PMID: 39590001 PMCID: PMC11591610 DOI: 10.3390/bios14110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Biosensing technology, which aims to measure and control the signals of biological substances, has recently been developed rapidly due to increasing concerns about health and the environment. Top-down technologies have been used mainly with a focus on reducing the size of biomaterials to the nano-level. However, bottom-up technologies such as self-assembly can provide more opportunities to molecular-level arrangements such as directionality and the shape of biomaterials. In particular, block copolymers (BCPs) and their self-assembly have been significantly explored as an effective means of bottom-up technologies to achieve recent advances in molecular-level fine control and imaging technology. BCPs have been widely used in various biosensing research fields because they can artificially control highly complex nano-scale structures in a directionally controlled manner, and future application research based on interactions with biomolecules according to the development and synthesis of new BCP structures is greatly anticipated. Here, we comprehensively discuss the basic principles of BCPs technology, the current status of their applications in biosensing technology, and their limitations and future prospects. Rather than discussing a specific field in depth, this study comprehensively covers the overall content of BCPs as a biosensing platform, and through this, we hope to increase researchers' understanding of adjacent research fields and provide research inspiration, thereby bringing about great advances in the relevant research fields.
Collapse
Affiliation(s)
- Yong-Ho Chung
- Department of Chemical Engineering, Hoseo University, Asan-si 31499, Republic of Korea
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
2
|
Li X, Zuo Y, Lin X, Guo B, Jiang H, Guan N, Zheng H, Huang Y, Gu X, Yu B, Wang X. Develop Targeted Protein Drug Carriers through a High-Throughput Screening Platform and Rational Design. Adv Healthc Mater 2024; 13:e2401793. [PMID: 38804201 DOI: 10.1002/adhm.202401793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Protein-based drugs offer advantages, such as high specificity, low toxicity, and minimal side effects compared to small molecule drugs. However, delivery of proteins to target tissues or cells remains challenging due to the instability, diverse structures, charges, and molecular weights of proteins. Polymers have emerged as a leading choice for designing effective protein delivery systems, but identifying a suitable polymer for a given protein is complicated by the complexity of both proteins and polymers. To address this challenge, a fluorescence-based high-throughput screening platform called ProMatch to efficiently collect data on protein-polymer interactions, followed by in vivo and in vitro experiments with rational design is developed. Using this approach to streamline polymer selection for targeted protein delivery, candidate polymers from commercially available options are identified and a polyhexamethylene biguanide (PHMB)-based system for delivering proteins to white adipose tissue as a treatment for obesity is developed. A branched polyethylenimine (bPEI)-based system for neuron-specific protein delivery to stimulate optic nerve regeneration is also developed. The high-throughput screening methodology expedites identification of promising polymer candidates for tissue-specific protein delivery systems, thereby providing a platform to develop innovative protein-based therapeutics.
Collapse
Affiliation(s)
- Xiaodan Li
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Nanhu Brain-Computer Interface Institute, Hangzhou, 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yanming Zuo
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Nanhu Brain-Computer Interface Institute, Hangzhou, 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xurong Lin
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Lingang Laboratory, Shanghai, 200031, China
| | - Binjie Guo
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Lingang Laboratory, Shanghai, 200031, China
| | - Haohan Jiang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Lingang Laboratory, Shanghai, 200031, China
| | - Naiyu Guan
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Nanhu Brain-Computer Interface Institute, Hangzhou, 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Hanyu Zheng
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Lingang Laboratory, Shanghai, 200031, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| | - Xuhua Wang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Nanhu Brain-Computer Interface Institute, Hangzhou, 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai, 200031, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| |
Collapse
|
3
|
Sytu MRC, Cho DH, Hahm JI. Self-Assembled Block Copolymers as a Facile Pathway to Create Functional Nanobiosensor and Nanobiomaterial Surfaces. Polymers (Basel) 2024; 16:1267. [PMID: 38732737 PMCID: PMC11085100 DOI: 10.3390/polym16091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Block copolymer (BCP) surfaces permit an exquisite level of nanoscale control in biomolecular assemblies solely based on self-assembly. Owing to this, BCP-based biomolecular assembly represents a much-needed, new paradigm for creating nanobiosensors and nanobiomaterials without the need for costly and time-consuming fabrication steps. Research endeavors in the BCP nanobiotechnology field have led to stimulating results that can promote our current understanding of biomolecular interactions at a solid interface to the never-explored size regimes comparable to individual biomolecules. Encouraging research outcomes have also been reported for the stability and activity of biomolecules bound on BCP thin film surfaces. A wide range of single and multicomponent biomolecules and BCP systems has been assessed to substantiate the potential utility in practical applications as next-generation nanobiosensors, nanobiodevices, and biomaterials. To this end, this Review highlights pioneering research efforts made in the BCP nanobiotechnology area. The discussions will be focused on those works particularly pertaining to nanoscale surface assembly of functional biomolecules, biomolecular interaction properties unique to nanoscale polymer interfaces, functionality of nanoscale surface-bound biomolecules, and specific examples in biosensing. Systems involving the incorporation of biomolecules as one of the blocks in BCPs, i.e., DNA-BCP hybrids, protein-BCP conjugates, and isolated BCP micelles of bioligand carriers used in drug delivery, are outside of the scope of this Review. Looking ahead, there awaits plenty of exciting research opportunities to advance the research field of BCP nanobiotechnology by capitalizing on the fundamental groundwork laid so far for the biomolecular interactions on BCP surfaces. In order to better guide the path forward, key fundamental questions yet to be addressed by the field are identified. In addition, future research directions of BCP nanobiotechnology are contemplated in the concluding section of this Review.
Collapse
Affiliation(s)
- Marion Ryan C. Sytu
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| | - David H. Cho
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | - Jong-in Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| |
Collapse
|
4
|
Parveen S, Basu M, Chowdhury P, Dhara T, DasGupta S, Das S, Dasgupta S. Surface modification of polydimethylsiloxane by the cataractous eye protein isolate. Int J Biol Macromol 2024; 260:129470. [PMID: 38237817 DOI: 10.1016/j.ijbiomac.2024.129470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Polydimethylsiloxane (PDMS), even though widely used in microfluidic applications, its hydrophobic nature restricts its utility in some cases. To address this, PDMS may be used in conjunction with a hydrophilic material. Herein, the PDMS surface is modified by plasma treatment followed by cross-linking with the cataractous eye protein isolate (CEPI). CEPI-PDMS composites are prepared at three pH and the effects of CEPI on the chemical, physical, and electrical properties of PDMS are extensively investigated. The cross-linking between PDMS and the protein are confirmed by FTIR, and the contact angle measurements indicate the improved hydrophilic nature of the composite films as compared to PDMS. Atomic Force Microscopy results demonstrate that the surface roughness is enhanced by the incorporation of the protein and is a function of the pH. The effective elastic modulus of the composites is improved by the incorporation of protein into the PDMS matrix. Measurements of the dielectric properties of these composites indicate that they behave as capacitors at lower frequency range while demonstrating resistive characteristics at higher frequency. These composites provide preliminary ideas in developing flexible devices for potential applications in diverse areas such as energy storage materials, and thermo-elective wireless switching devices.
Collapse
Affiliation(s)
- Sultana Parveen
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Mainak Basu
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Prasun Chowdhury
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Trina Dhara
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sunando DasGupta
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Soumen Das
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
5
|
Fontelo R, Reis RL, Novoa-Carballal R, Pashkuleva I. Preparation, Properties, and Bioapplications of Block Copolymer Nanopatterns. Adv Healthc Mater 2024; 13:e2301810. [PMID: 37737834 DOI: 10.1002/adhm.202301810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Block copolymer (BCP) self-assembly has emerged as a feasible method for large-scale fabrication with remarkable precision - features that are not common for most of the nanofabrication techniques. In this review, recent advancements in the molecular design of BCP along with state-of-the-art processing methodologies based on microphase separation alone or its combination with different lithography methods are presented. Furthermore, the bioapplications of the generated nanopatterns in the development of protein arrays, cell-selective surfaces, and antibacterial coatings are explored. Finally, the current challenges in the field are outlined and the potential breakthroughs that can be achieved by adopting BCP approaches already applied in the fabrication of electronic devices are discussed.
Collapse
Affiliation(s)
- Raul Fontelo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ramon Novoa-Carballal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- CINBIO, University of Vigo, Campus Universitario de Vigo, Vigo, Pontevedra, 36310, Spain
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Jahan S, Doyle C, Ghimire A, Combita D, Rainey JK, Wagner BD, Ahmed M. Elucidating the Role of Optical Activity of Polymers in Protein-Polymer Interactions. Polymers (Basel) 2023; 16:65. [PMID: 38201730 PMCID: PMC10781056 DOI: 10.3390/polym16010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Proteins are biomolecules with potential applications in agriculture, food sciences, pharmaceutics, biotechnology, and drug delivery. Interactions of hydrophilic and biocompatible polymers with proteins may impart proteolytic stability, improving the therapeutic effects of biomolecules and also acting as excipients for the prolonged storage of proteins under harsh conditions. The interactions of hydrophilic and stealth polymers such as poly(ethylene glycol), poly(trehalose), and zwitterionic polymers with various proteins are well studied. This study evaluates the molecular interactions of hydrophilic and optically active poly(vitamin B5 analogous methacrylamide) (poly(B5AMA)) with model proteins by fluorescence spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and circular dichroism (CD) spectroscopy analysis. The optically active hydrophilic polymers prepared using chiral monomers of R-(+)- and S-(-)-B5AMA by the photo-iniferter reversible addition fragmentation chain transfer (RAFT) polymerization showed concentration-dependent weak interactions of the polymers with bovine serum albumin and lysozyme proteins. Poly(B5AMA) also exhibited a concentration-dependent protein stabilizing effect at elevated temperatures, and no effect of the stereoisomers of polymers on protein thermal stability was observed. NMR analysis, however, showed poly(B5AMA) stereoisomer-dependent changes in the secondary structure of proteins.
Collapse
Affiliation(s)
- Samin Jahan
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Catherine Doyle
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Anupama Ghimire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.); (J.K.R.)
| | - Diego Combita
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.); (J.K.R.)
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Brian D. Wagner
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
7
|
Maniar M, Kohn J, Murthy NS. Asymmetrical interactions between nanoparticles and proteins arising from deformation upon adsorption to surfaces. Biophys Chem 2023; 302:107098. [PMID: 37677920 DOI: 10.1016/j.bpc.2023.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Drug release from polymeric nanoparticles (NPs) is governed by their adsorption onto cell membranes and transmigration across cell walls. These steps are influenced by their interactions with proteins near the cells. These interactions were investigated by studying the sequential adsorption of plasma proteins, albumin (Alb) and fibrinogen (Fg), and micellar NPs using quartz crystal microbalance with dissipation (QCMD), X-ray photoelectron spectroscopy (XPS), and small-angle X-ray scattering (SAXS). The three NPs in the study all have poly(ethylene glycol) (PEG) shells but different cores: amorphous poly(propylene oxide) (PPO), crystalline polycaprolactone (PCL), and poly(desaminotyrosyl-tyrosine octyl ester-co-suberic acid) (DTO-SA). None of the NPs adsorbed onto a pre-adsorbed Fg layer. On the other hand, when the deposition sequence was reversed, Fg was adsorbed onto DTO-SA NP and PCL NP surfaces, but not onto the PPO NP surface. The interactions with Alb were different: DTO-SA did not adsorb onto Alb and vice versa; PPO NP adsorbed onto an Alb layer, but Alb did not adsorb onto the PPO NP layer; and PCL NP reversibly adsorbed onto Alb, but Alb displaced pre-adsorbed PCL NP. Thus, in most instances, the adsorption behavior was asymmetric in that it was dependent on the order of arrival of the adsorbates at the substrate. SAXS data did not show evidence for complex formation in solution. Thus, the solution behavior appears not to be a predictor of the interaction of proteins and the NPs near surfaces. Differing strengths of pairwise interactions of proteins, NPs and substrates account for this adsorption behavior. These differences in interactions could be the results of deformation of the adsorbates immobilized at the surface and the different degrees of surface remodeling that occur upon adsorption. Deformation could lead to disassembly of the NPs that has implications on their ability to release their payload of drugs upon adsorption onto tissue surfaces.
Collapse
Affiliation(s)
- Megan Maniar
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Joachim Kohn
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - N Sanjeeva Murthy
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
8
|
Upadhya R, Di Mare E, Tamasi MJ, Kosuri S, Murthy NS, Gormley AJ. Examining polymer-protein biophysical interactions with small-angle x-ray scattering and quartz crystal microbalance with dissipation. J Biomed Mater Res A 2023; 111:440-450. [PMID: 36537182 PMCID: PMC9908847 DOI: 10.1002/jbm.a.37479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Polymer-protein hybrids can be deployed to improve protein solubility and stability in denaturing environments. While previous work used robotics and active machine learning to inform new designs, further biophysical information is required to ascertain structure-function behavior. Here, we show the value of tandem small-angle x-ray scattering (SAXS) and quartz crystal microbalance with dissipation (QCMD) experiments to reveal detailed polymer-protein interactions with horseradish peroxidase (HRP) as a test case. Of particular interest was the process of polymer-protein complex formation under thermal stress whereby SAXS monitors formation in solution while QCMD follows these dynamics at an interface. The radius of gyration (Rg ) of the protein as measured by SAXS does not change significantly in the presence of polymer under denaturing conditions, but thickness and dissipation changes were observed in QCMD data. SAXS data with and without thermal stress were utilized to create bead models of the potential complexes and denatured enzyme, and each model fit provided insight into the degree of interactions. Additionally, QCMD data demonstrated that HRP deforms by spreading upon surface adsorption at low concentration as shown by longer adsorption times and smaller frequency shifts. In contrast, thermally stressed and highly inactive HRP had faster adsorption kinetics. The combination of SAXS and QCMD serves as a framework for biophysical characterization of interactions between proteins and polymers which could be useful in designing polymer-protein hybrids.
Collapse
Affiliation(s)
- Rahul Upadhya
- Department of Biomedical Engineering, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Elena Di Mare
- Department of Biomedical Engineering, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Matthew J. Tamasi
- Department of Biomedical Engineering, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Shashank Kosuri
- Department of Biomedical Engineering, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - N. Sanjeeva Murthy
- Department of Biomedical Engineering, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Adam J. Gormley
- Department of Biomedical Engineering, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
9
|
Canepa P, Canale C, Cavalleri O, Marletta G, Messina GML, Messori M, Novelli R, Mattioli SL, Apparente L, Detta N, Romeo T, Allegretti M. Adsorption of the rhNGF Protein on Polypropylene with Different Grades of Copolymerization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2076. [PMID: 36903190 PMCID: PMC10004483 DOI: 10.3390/ma16052076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The surface properties of drug containers should reduce the adsorption of the drug and avoid packaging surface/drug interactions, especially in the case of biologically-derived products. Here, we developed a multi-technique approach that combined Differential Scanning Calorimetry (DSC), Atomic Force Microscopy (AFM), Contact Angle (CA), Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), and X-ray Photoemission Spectroscopy (XPS) to investigate the interactions of rhNGF on different pharma grade polymeric materials. Polypropylene (PP)/polyethylene (PE) copolymers and PP homopolymers, both as spin-coated films and injected molded samples, were evaluated for their degree of crystallinity and adsorption of protein. Our analyses showed that copolymers are characterized by a lower degree of crystallinity and lower roughness compared to PP homopolymers. In line with this, PP/PE copolymers also show higher contact angle values, indicating a lower surface wettability for the rhNGF solution on copolymers than PP homopolymers. Thus, we demonstrated that the chemical composition of the polymeric material and, in turn, its surface roughness determine the interaction with the protein and identified that copolymers may offer an advantage in terms of protein interaction/adsorption. The combined QCM-D and XPS data indicated that protein adsorption is a self-limiting process that passivates the surface after the deposition of roughly one molecular layer, preventing any further protein adsorption in the long term.
Collapse
Affiliation(s)
- Paolo Canepa
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Claudio Canale
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Ornella Cavalleri
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Giovanni Marletta
- Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Dipartimento di Scienze Chimiche, Università di Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Grazia M. L. Messina
- Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Dipartimento di Scienze Chimiche, Università di Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Massimo Messori
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Rubina Novelli
- Research & Early Development, Dompè Farmaceutici S.p.A., Via Santa Lucia 6, 20122 Milano, Italy
| | - Simone Luca Mattioli
- Research & Early Development, Dompè Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Lucia Apparente
- Research & Early Development, Dompè Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Nicola Detta
- Research & Early Development, Dompè Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Tiziana Romeo
- Research & Early Development, Dompè Farmaceutici S.p.A., Loc. Campo di Pile, 67100 L’Aquila, Italy
| | - Marcello Allegretti
- Research & Early Development, Dompè Farmaceutici S.p.A., Loc. Campo di Pile, 67100 L’Aquila, Italy
| |
Collapse
|
10
|
Davari N, Bakhtiary N, Khajehmohammadi M, Sarkari S, Tolabi H, Ghorbani F, Ghalandari B. Protein-Based Hydrogels: Promising Materials for Tissue Engineering. Polymers (Basel) 2022; 14:986. [PMID: 35267809 PMCID: PMC8914701 DOI: 10.3390/polym14050986] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The successful design of a hydrogel for tissue engineering requires a profound understanding of its constituents' structural and molecular properties, as well as the proper selection of components. If the engineered processes are in line with the procedures that natural materials undergo to achieve the best network structure necessary for the formation of the hydrogel with desired properties, the failure rate of tissue engineering projects will be significantly reduced. In this review, we examine the behavior of proteins as an essential and effective component of hydrogels, and describe the factors that can enhance the protein-based hydrogels' structure. Furthermore, we outline the fabrication route of protein-based hydrogels from protein microstructure and the selection of appropriate materials according to recent research to growth factors, crucial members of the protein family, and their delivery approaches. Finally, the unmet needs and current challenges in developing the ideal biomaterials for protein-based hydrogels are discussed, and emerging strategies in this area are highlighted.
Collapse
Affiliation(s)
- Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran;
| | - Negar Bakhtiary
- Burn Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14115114, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd 8174848351, Iran;
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Soulmaz Sarkari
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 158754413, Iran;
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 158754413, Iran
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
11
|
Cho DH, Xie T, Mulcahey PJ, Kelleher NP, Hahm JI. Distinctive Adsorption Mechanism and Kinetics of Immunoglobulin G on a Nanoscale Polymer Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1458-1470. [PMID: 35037456 DOI: 10.1021/acs.langmuir.1c02710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Elucidation of protein adsorption beyond simple polymer surfaces to those presenting greater chemical complexity and nanoscopic features is critical to developing well-controlled nanobiomaterials and nanobiosensors. In this study, we repeatedly and faithfully track individual proteins on the same nanodomain areas of a block copolymer (BCP) surface and monitor the adsorption and assembly behavior of a model protein, immunoglobulin G (IgG), over time into a tight surface-packed structure. With discrete protein adsorption events unambiguously visualized at the biomolecular level, the detailed assembly and packing states of IgG on the BCP nanodomain surface are subsequently correlated to various regimes of IgG adsorption kinetic plots. Intriguing features, entirely different from those observed from macroscopic homopolymer templates, are identified from the IgG adsorption isotherms on the nanoscale, chemically varying BCP surface. They include the presence of two Langmuir-like adsorption segments and a nonmonotonic regime in the adsorption plot. Via correlation to time-corresponding topographic data, the unique isotherm features are explained with single biomolecule level details of the IgG adsorption pathway on the BCP. This work not only provides much needed, direct experimental evidence for time-resolved, single protein level, adsorption events on nanoscale polymer surfaces but also signifies mutual linking between specific topographic states of protein adsorption and assembly to particular segments of adsorption isotherms. From the fundamental research viewpoint, the correlative ability to examine the nanoscopic surface organizations of individual proteins and their local as well as global adsorption kinetic profiles will be highly valuable for accurately determining protein assembly mechanisms and interpreting protein adsorption kinetics on nanoscale surfaces. Application-wise, such knowledge will also be important for fundamentally guiding the design and development of biomaterials and biomedical devices that exploit nanoscale polymer architectures.
Collapse
Affiliation(s)
- David H Cho
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, D.C. 20057, United States
| | - Tian Xie
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, D.C. 20057, United States
| | - Patrick J Mulcahey
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, D.C. 20057, United States
| | - Noah P Kelleher
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, D.C. 20057, United States
| | - Jong-In Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, D.C. 20057, United States
| |
Collapse
|
12
|
|