1
|
Reddy PR, Kulandaisamy A, Gromiha MM. TMB Stab-pred: Predicting the stability of transmembrane β-barrel proteins using their sequence and structural signatures. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141070. [PMID: 40189175 DOI: 10.1016/j.bbapap.2025.141070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Understanding the folding and stability of transmembrane β-barrel proteins (TMBs) provides insights into their structural integrity, functional mechanisms, and implications for disease states. In this work, we have characterized the important features that influence the folding and stability of TMBs. Our results showed that lipid accessible surface area and transition energy are important for understanding the stability of TMBs. Further, this information was utilized to develop a linear regression-based method for predicting the stability of TMBs. Our method achieved a correlation and mean absolute error (MAE) of 0.96 and 0.94 kcal/mol on the jack-knife test. Moreover, we compared the stability of TMBs with globular all-β proteins and observed that long-range interactions and energetic properties are crucial for maintaining the stability of both β-barrel membrane and all-β globular proteins. On the other hand, side-chain - side-chain hydrogen bonds and lipid accessible surface area are specific to membrane proteins. These features are critical for membrane proteins because they influence a protein to embed within the membrane environment. Further, we have developed a web server, TMB Stab-pred for predicting the stability of TMBs, and it is accessible at https://web.iitm.ac.in/bioinfo2/TMBB/index.html.
Collapse
Affiliation(s)
- P Ramakrishna Reddy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - A Kulandaisamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
2
|
Hermosilla AM, Berner C, Ovchinnikov S, Vorobieva AA. Validation of de novo designed water-soluble and transmembrane β-barrels by in silico folding and melting. Protein Sci 2024; 33:e5033. [PMID: 38864690 PMCID: PMC11168064 DOI: 10.1002/pro.5033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/14/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
In silico validation of de novo designed proteins with deep learning (DL)-based structure prediction algorithms has become mainstream. However, formal evidence of the relationship between a high-quality predicted model and the chance of experimental success is lacking. We used experimentally characterized de novo water-soluble and transmembrane β-barrel designs to show that AlphaFold2 and ESMFold excel at different tasks. ESMFold can efficiently identify designs generated based on high-quality (designable) backbones. However, only AlphaFold2 can predict which sequences have the best chance of experimentally folding among similar designs. We show that ESMFold can generate high-quality structures from just a few predicted contacts and introduce a new approach based on incremental perturbation of the prediction ("in silico melting"), which can reveal differences in the presence of favorable contacts between designs. This study provides a new insight on DL-based structure prediction models explainability and on how they could be leveraged for the design of increasingly complex proteins; in particular membrane proteins which have historically lacked basic in silico validation tools.
Collapse
Affiliation(s)
- Alvaro Martin Hermosilla
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
- VIB‐VUB Center for Structural BiologyBrusselsBelgium
| | - Carolin Berner
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
- VIB‐VUB Center for Structural BiologyBrusselsBelgium
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship ProgramHarvard UniversityCambridgeMassachusettsUSA
- Present address:
Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Anastassia A. Vorobieva
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
- VIB‐VUB Center for Structural BiologyBrusselsBelgium
- VIB Center for AI and Computational BiologyBelgium
| |
Collapse
|
3
|
Topitsch A, Schwede T, Pereira J. Outer membrane β-barrel structure prediction through the lens of AlphaFold2. Proteins 2024; 92:3-14. [PMID: 37465978 DOI: 10.1002/prot.26552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Most proteins found in the outer membrane of gram-negative bacteria share a common domain: the transmembrane β-barrel. These outer membrane β-barrels (OMBBs) occur in multiple sizes and different families with a wide range of functions evolved independently by amplification from a pool of homologous ancestral ββ-hairpins. This is part of the reason why predicting their three-dimensional (3D) structure, especially by homology modeling, is a major challenge. Recently, DeepMind's AlphaFold v2 (AF2) became the first structure prediction method to reach close-to-experimental atomic accuracy in CASP even for difficult targets. However, membrane proteins, especially OMBBs, were not abundant during their training, raising the question of how accurate the predictions are for these families. In this study, we assessed the performance of AF2 in the prediction of OMBBs and OMBB-like folds of various topologies using an in-house-developed tool for the analysis of OMBB 3D structures, and barrOs. In agreement with previous studies on other membrane protein classes, our results indicate that AF2 predicts transmembrane β-barrel structures at high accuracy independently of the use of templates, even for novel topologies absent from the training set. These results provide confidence on the models generated by AF2 and open the door to the structural elucidation of novel transmembrane β-barrel topologies identified in high-throughput OMBB annotation studies or designed de novo.
Collapse
Affiliation(s)
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Joana Pereira
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
4
|
Maurer M, Lazaridis T. Transmembrane β-Barrel Models of α-Synuclein Oligomers. J Chem Inf Model 2023; 63:7171-7179. [PMID: 37963823 DOI: 10.1021/acs.jcim.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The aggregation of α-synuclein is implicated in a number of neurodegenerative diseases, such as Parkinson's and Multiple System Atrophy, but the role of these aggregates in disease development is not clear. One possible mechanism of cytotoxicity is the disturbance or permeabilization of cell membranes by certain types of oligomers. However, no high-resolution structure of such membrane-embedded complexes has ever been determined. Here we construct and evaluate putative transmembrane β-barrels formed by this protein. Examination of the α-synuclein sequence reveals two regions that could form membrane-embedded β-hairpins: 64-92 (the NAC), and 35-56, which harbors many familial Parkinson's mutations. The stability of β-barrels formed by these hairpins is examined first in implicit membrane pores and then by multimicrosecond all-atom simulations. We find that a NAC region barrel remains stably inserted and hydrated for at least 10 μs. A 35-56 barrel remains stably inserted in the membrane but dehydrates and collapses if all His50 are neutral or if His50 is replaced by Q. If half of the His50 are doubly protonated, the barrel takes an oval shape but remains hydrated for at least 10 μs. Possible implications of these findings for α-synuclein pathology are discussed.
Collapse
Affiliation(s)
- Manuela Maurer
- Department of Chemistry & Biochemistry, City College of New York/CUNY, 160 Convent Ave, New York, New York 10031, United States
| | - Themis Lazaridis
- Department of Chemistry & Biochemistry, City College of New York/CUNY, 160 Convent Ave, New York, New York 10031, United States
| |
Collapse
|
5
|
Dhar R, Bowman AM, Hatungimana B, Sg Slusky J. Evolutionary Engineering a Larger Porin Using a Loop-to-Hairpin Mechanism. J Mol Biol 2023; 435:168292. [PMID: 37769963 PMCID: PMC11215794 DOI: 10.1016/j.jmb.2023.168292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
In protein evolution, diversification is generally driven by genetic duplication. The hallmarks of this mechanism are visible in the repeating topology of various proteins. In outer membrane β-barrels, duplication is visible with β-hairpins as the repeating unit of the barrel. In contrast to the overall use of duplication in diversification, a computational study hypothesized evolutionary mechanisms other than hairpin duplications leading to increases in the number of strands in outer membrane β-barrels. Specifically, the topology of some 16- and 18-stranded β-barrels appear to have evolved through a loop to β-hairpin transition. Here we test this novel evolutionary mechanism by creating a chimeric protein from an 18-stranded β-barrel and an evolutionarily related 16-stranded β-barrel. The chimeric combination of the two was created by replacing loop L3 of the 16-stranded barrel with the sequentially matched transmembrane β-hairpin region of the 18-stranded barrel. We find the resulting chimeric protein is stable and has characteristics of increased strand number. This study provides the first experimental evidence supporting the evolution through a loop to β-hairpin transition.
Collapse
Affiliation(s)
- Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA. https://twitter.com/Rik_Skywalker
| | - Alexander M Bowman
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Brunojoel Hatungimana
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Joanna Sg Slusky
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA; Computational Biology Program, The University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
6
|
Dhar R, Bowman AM, Hatungimana B, Slusky JS. Evolutionary engineering a larger porin using a loop-to-hairpin mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544993. [PMID: 37398247 PMCID: PMC10312768 DOI: 10.1101/2023.06.14.544993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In protein evolution, diversification is generally driven by genetic duplication. The hallmarks of this mechanism are visible in the repeating topology of various proteins. In outer membrane β-barrels, duplication is visible with β-hairpins as the repeating unit of the barrel. In contrast to the overall use of duplication in diversification, a computational study hypothesized evolutionary mechanisms other than hairpin duplications leading to increases in the number of strands in outer membrane β-barrels. Specifically, the topology of some 16- and 18-stranded β-barrels appear to have evolved through a loop to β-hairpin transition. Here we test this novel evolutionary mechanism by creating a chimeric protein from an 18-stranded β-barrel and an evolutionarily related 16-stranded β-barrel. The chimeric combination of the two was created by replacing loop L3 of the 16-stranded barrel with the sequentially matched transmembrane β-hairpin region of the 18-stranded barrel. We find the resulting chimeric protein is stable and has characteristics of increased strand number. This study provides the first experimental evidence supporting the evolution through a loop to β-hairpin transition. Highlights We find evidence supporting a novel diversification mechanism in membrane β-barrelsThe mechanism is the conversion of an extracellular loop to transmembrane β-hairpinA chimeric protein modeling this mechanism folds stably in the membraneThe chimera has more β-structure and a larger pore, consistent with a loop-to-hairpin transition.
Collapse
Affiliation(s)
- Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, Lawrence KS 66045
| | - Alexander M Bowman
- Department of Molecular Biosciences, The University of Kansas, Lawrence KS 66045
| | | | - Joanna Sg Slusky
- Department of Molecular Biosciences, The University of Kansas, Lawrence KS 66045
- Computational Biology Program, The University of Kansas, Lawrence KS 66047
| |
Collapse
|
7
|
Montezano D, Bernstein R, Copeland MM, Slusky JSG. General features of transmembrane beta barrels from a large database. Proc Natl Acad Sci U S A 2023; 120:e2220762120. [PMID: 37432995 PMCID: PMC10629564 DOI: 10.1073/pnas.2220762120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/03/2023] [Indexed: 07/13/2023] Open
Abstract
Large datasets contribute new insights to subjects formerly investigated by exemplars. We used coevolution data to create a large, high-quality database of transmembrane β-barrels (TMBB). By applying simple feature detection on generated evolutionary contact maps, our method (IsItABarrel) achieves 95.88% balanced accuracy when discriminating among protein classes. Moreover, comparison with IsItABarrel revealed a high rate of false positives in previous TMBB algorithms. In addition to being more accurate than previous datasets, our database (available online) contains 1,938,936 bacterial TMBB proteins from 38 phyla, respectively, 17 and 2.2 times larger than the previous sets TMBB-DB and OMPdb. We anticipate that due to its quality and size, the database will serve as a useful resource where high-quality TMBB sequence data are required. We found that TMBBs can be divided into 11 types, three of which have not been previously reported. We find tremendous variance in proteome percentage among TMBB-containing organisms with some using 6.79% of their proteome for TMBBs and others using as little as 0.27% of their proteome. The distribution of the lengths of the TMBBs is suggestive of previously hypothesized duplication events. In addition, we find that the C-terminal β-signal varies among different classes of bacteria though its consensus sequence is LGLGYRF. However, this β-signal is only characteristic of prototypical TMBBs. The ten non-prototypical barrel types have other C-terminal motifs, and it remains to be determined if these alternative motifs facilitate TMBB insertion or perform any other signaling function.
Collapse
Affiliation(s)
- Daniel Montezano
- Computational Biology Program, University of Kansas, Lawrence, KS66045
| | - Rebecca Bernstein
- Computational Biology Program, University of Kansas, Lawrence, KS66045
| | | | - Joanna S. G. Slusky
- Computational Biology Program, University of Kansas, Lawrence, KS66045
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66045
| |
Collapse
|
8
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Budiardjo SJ, Stevens JJ, Calkins AL, Ikujuni AP, Wimalasena VK, Firlar E, Case DA, Biteen JS, Kaelber JT, Slusky JSG. Colicin E1 opens its hinge to plug TolC. eLife 2022; 11:73297. [PMID: 35199644 PMCID: PMC9020818 DOI: 10.7554/elife.73297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
The double membrane architecture of Gram-negative bacteria forms a barrier that is impermeable to most extracellular threats. Bacteriocin proteins evolved to exploit the accessible, surface-exposed proteins embedded in the outer membrane to deliver cytotoxic cargo. Colicin E1 is a bacteriocin produced by, and lethal to, Escherichia coli that hijacks the outer membrane proteins (OMPs) TolC and BtuB to enter the cell. Here, we capture the colicin E1 translocation domain inside its membrane receptor, TolC, by high-resolution cryo-electron microscopy to obtain the first reported structure of a bacteriocin bound to TolC. Colicin E1 binds stably to TolC as an open hinge through the TolC pore—an architectural rearrangement from colicin E1’s unbound conformation. This binding is stable in live E. coli cells as indicated by single-molecule fluorescence microscopy. Finally, colicin E1 fragments binding to TolC plug the channel, inhibiting its native efflux function as an antibiotic efflux pump, and heightening susceptibility to three antibiotic classes. In addition to demonstrating that these protein fragments are useful starting points for developing novel antibiotic potentiators, this method could be expanded to other colicins to inhibit other OMP functions. Bacteria are constantly warring with each other for space and resources. As a result, they have developed a range of molecular weapons to poison, damage or disable other cells. For instance, bacteriocins are proteins that can latch onto structures at the surface of enemy bacteria and push toxins through their outer membrane. Bacteria are increasingly resistant to antibiotics, representing a growing concern for modern healthcare. One way that they are able to survive is by using ‘efflux pumps’ studded through their external membranes to expel harmful drugs before these can cause damage. Budiardjo et al. wanted to test whether bacteriocins could interfere with this defence mechanism by blocking efflux pumps. Bacteriocins are usually formed of binding elements (which recognise specific target proteins) and of a ‘killer tail’ that can stab the cell. Experiments showed that the binding parts of a bacteriocin could effectively ‘plug’ efflux pumps in Escherichia coli bacteria: high-resolution molecular microscopy revealed how the bacteriocin fragment binds to the pump, while fluorescent markers showed that it attached to the surface of E. coli and stopped the efflux pumps from working. As a result, lower amounts of antibiotics were necessary to kill the bacteria when bacteriocins were present. The work by Budiardjo et al. could lead to new ways to combat bacteria that will reduce the need for current antibiotics. In the future, bacteriocins could also be harnessed to target other proteins than efflux pumps, allowing scientists to manipulate a range of bacterial processes.
Collapse
Affiliation(s)
- S Jimmy Budiardjo
- Center for Computational Biology, University of Kansas, Lawrence, United States
| | - Jacqueline J Stevens
- Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Anna L Calkins
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Ayotunde P Ikujuni
- Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | | | - Emre Firlar
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, United States
| | - David A Case
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Joanna S G Slusky
- Center for Computational Biology, University of Kansas, Lawrence, United States
| |
Collapse
|
10
|
Sulatskaya AI, Kosolapova AO, Bobylev AG, Belousov MV, Antonets KS, Sulatsky MI, Kuznetsova IM, Turoverov KK, Stepanenko OV, Nizhnikov AA. β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis. Int J Mol Sci 2021; 22:11316. [PMID: 34768745 PMCID: PMC8582884 DOI: 10.3390/ijms222111316] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023] Open
Abstract
Insoluble protein aggregates with fibrillar morphology called amyloids and β-barrel proteins both share a β-sheet-rich structure. Correctly folded β-barrel proteins can not only function in monomeric (dimeric) form, but also tend to interact with one another-followed, in several cases, by formation of higher order oligomers or even aggregates. In recent years, findings proving that β-barrel proteins can adopt cross-β amyloid folds have emerged. Different β-barrel proteins were shown to form amyloid fibrils in vitro. The formation of functional amyloids in vivo by β-barrel proteins for which the amyloid state is native was also discovered. In particular, several prokaryotic and eukaryotic proteins with β-barrel domains were demonstrated to form amyloids in vivo, where they participate in interspecies interactions and nutrient storage, respectively. According to recent observations, despite the variety of primary structures of amyloid-forming proteins, most of them can adopt a conformational state with the β-barrel topology. This state can be intermediate on the pathway of fibrillogenesis ("on-pathway state"), or can be formed as a result of an alternative assembly of partially unfolded monomers ("off-pathway state"). The β-barrel oligomers formed by amyloid proteins possess toxicity, and are likely to be involved in the development of amyloidoses, thus representing promising targets for potential therapy of these incurable diseases. Considering rapidly growing discoveries of the amyloid-forming β-barrels, we may suggest that their real number and diversity of functions are significantly higher than identified to date, and represent only "the tip of the iceberg". Here, we summarize the data on the amyloid-forming β-barrel proteins, their physicochemical properties, and their biological functions, and discuss probable means and consequences of the amyloidogenesis of these proteins, along with structural relationships between these two widespread types of β-folds.
Collapse
Affiliation(s)
- Anna I. Sulatskaya
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anastasiia O. Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia;
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia;
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| |
Collapse
|
11
|
Zhang Z, Ryoo D, Balusek C, Acharya A, Rydmark MO, Linke D, Gumbart JC. Inward-facing glycine residues create sharp turns in β-barrel membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183662. [PMID: 34097860 DOI: 10.1016/j.bbamem.2021.183662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/15/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
The transmembrane region of outer-membrane proteins (OMPs) of Gram-negative bacteria are almost exclusively β-barrels composed of between 8 and 26 β-strands. To explore the relationship between β-barrel size and shape, we modeled and simulated engineered variants of the Escherichia coli protein OmpX with 8, 10, 12, 14, and 16 β-strands. We found that while smaller barrels maintained a roughly circular shape, the 16-stranded variant developed a flattened cross section. This flat cross section impeded its ability to conduct ions, in agreement with previous experimental observations. Flattening was determined to arise from the presence of inward-facing glycines at sharp turns in the β-barrel. An analysis of all simulations revealed that glycines, on average, make significantly smaller angles with residues on neighboring strands than all other amino acids, including alanine, and create sharp turns in β-barrel cross sections. This observation was generalized to 119 unique structurally resolved OMPs. We also found that the fraction of glycines in β-barrels decreases as the strand number increases, suggesting an evolutionary role for the addition or removal of glycine in OMP sequences.
Collapse
Affiliation(s)
- Zijian Zhang
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, United States of America
| | - David Ryoo
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Curtis Balusek
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, United States of America
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, United States of America
| | | | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, United States of America.
| |
Collapse
|