1
|
Abgarjan V, Kuk K, Garthe JLS, Wigger TL, Karg M. Compression, expansion and relaxation of soft colloidal monolayers at the air/water interface. SOFT MATTER 2025. [PMID: 40261075 DOI: 10.1039/d4sm01383b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The phase behavior of soft and deformable microgels at fluid interfaces is typically studied with a Langmuir trough and using uniaxial compression. In situ investigations that shine light on the structural arrangements and changes during compression are scarce. Knowledge on the phase behavior is mostly generated from ex situ observations after transfer of monolayers from the fluid interface onto a substrate. Similarly, little is known about the impact of the compression geometry and potentially occurring relaxation processes after compression. Here, we use small-angle light scattering implemented in a Langmuir trough to follow the evolution of microgel monolayers in situ and in real time. We use core-shell microgels as soft model colloids where the rigid cores ensure large contrast for light diffraction. Not only the influence of compression but also the influence of expansion is studied as well as relaxation after previous compression/expansion. At sufficiently high surface pressures, densely packed monolayers of partially compressed microgels are obtained at air/water interfaces. In this regime, the monolayer response upon manipulation of the accessible interfacial area is reversible over many cycles. The uniaxial geometry of this manipulation leads to anisotropic deformation of the monolayer seen by the recorded structure factor. Upon stopping compression/expansion, anisotropy relaxes with two time constants but full isotropy is not recovered. This work underlines the potential and necessity of in situ ensemble techniques for investigating soft colloidal monolayers at fluid interfaces. With our results, we advance the understanding of how soft colloids react to uniaxial compression/expansion.
Collapse
Affiliation(s)
- Vahan Abgarjan
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Keumkyung Kuk
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Jonathan Linus Samuel Garthe
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Tillmann Lukas Wigger
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Matthias Karg
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Zhou Y, Crassous J, Karg M. Core-Shell Microgels at Air/Water Interfaces: Role of Interfacial Tension in Monolayer Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9274-9287. [PMID: 40163380 PMCID: PMC12004919 DOI: 10.1021/acs.langmuir.4c05050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Core-shell microgels with rigid cores and soft, deformable hydrogel shells can assemble at air-water interfaces, forming freely floating monolayers. The strong adsorption at such interfaces is related to the reduction in interfacial tension, which also causes the microgels to deform laterally. The degree of this deformation is typically controlled through applied surface pressure. Until now, surprisingly little has been known about the impact of interfacial tension imbalances between interfacial areas covered with a microgel monolayer and microgel-free areas in the surroundings. In this work, we systematically study the monolayer evolution at air/water interfaces in dependence of interfacial tension controlled by the addition of sodium dodecyl sulfate or linear poly-N-isopropylacrylamide homopolymer to the free area. We do this by globally monitoring the evolution of the area of freely floating monolayers. Macroscopic changes are also related to the local microstructure studied by atomic force microscopy (AFM). Depending on the interfacial tension imbalance, the monolayer either expands, shrinks, or maintains its conformation. The kinetics of monolayer expansion is compared for core-shell microgels with the same silica core and varying cross-linker densities. Our study reveals the impact of interfacial tension on the behavior of microgel monolayers at liquid interfaces and also provides useful insights into controlling the two-dimensional (2D) microstructure without the need for a Langmuir trough.
Collapse
Affiliation(s)
- Yichu Zhou
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jérôme
J. Crassous
- Institut
für Physikalische Chemie, RWTH Aachen
University, Landoltweg 2, 52074 Aachen, Germany
| | - Matthias Karg
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Physical
Chemistry of Functional Polymers, Martin
Luther University Halle-Wittenberg, Institute of Chemistry, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Cook E, Moran K, Johnson QR, Lakhal A, Chauhan BPS. A Facile One-Pot Preparation and Catalytic Application of Tunable Silica-Coated Aqueous Gold Nanoparticles. Molecules 2025; 30:1355. [PMID: 40142130 PMCID: PMC11946824 DOI: 10.3390/molecules30061355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
It is known that designer polymers can be used for the synthesis and stabilization of metallic nanoparticle systems, providing new, tailorable properties. In this work, we demonstrate the trifold utility of a designer polymer, trimethoxysilylpropyl-(polyethylenimine) (TMSP-PEI), providing reduction, stabilization, and protection in a single step. Our facile and unique synthesis affords gold nanoparticles with varying sizes and morphologies in a range of solvents without the need for additional reducing agents. The use of this substituted polymer was manipulated in terms of the metal-to-ligand ratio to induce changes in the nanoparticle nucleation and growth. Upon further experimental analysis, it was discovered that adjustments to not only the metal-ligand ratio but also the solvent environment produced nanoparticles with different shape and size distributions. In addition, the synthesized gold nanoparticles were investigated for their catalytic ability to reduce Eosin Y in the presence of sodium borohydride without degradation.
Collapse
Affiliation(s)
| | | | | | | | - Bhanu P. S. Chauhan
- Engineered Nanomaterials Laboratory, Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne, NJ 07470, USA; (E.C.); (K.M.); (Q.R.J.); (A.L.)
| |
Collapse
|
4
|
Brambilla D, Panico F, Zarini L, Mussida A, Ferretti AM, Aslan M, Ünlü MS, Chiari M. Copolymer-Coated Gold Nanoparticles: Enhanced Stability and Customizable Functionalization for Biological Assays. BIOSENSORS 2024; 14:319. [PMID: 39056595 PMCID: PMC11274550 DOI: 10.3390/bios14070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Gold nanoparticles (AuNPs) play a vital role in biotechnology, medicine, and diagnostics due to their unique optical properties. Their conjugation with antibodies, antigens, proteins, or nucleic acids enables precise targeting and enhances biosensing capabilities. Functionalized AuNPs, however, may experience reduced stability, leading to aggregation or loss of functionality, especially in complex biological environments. Additionally, they can show non-specific binding to unintended targets, impairing assay specificity. Within this work, citrate-stabilized and silica-coated AuNPs (GNPs and SiGNPs, respectively) have been coated using N,N-dimethylacrylamide-based copolymers to increase their stability and enable their functionalization with biomolecules. AuNP stability after modification has been assessed by a combination of techniques including spectrophotometric characterization, nanoparticle tracking analysis, transmission electron microscopy and functional microarray tests. Two different copolymers were identified to provide a stable coating of AuNPs while enabling further modification through click chemistry reactions, due to the presence of azide groups in the polymers. Following this experimental design, AuNPs decorated with ssDNA and streptavidin were synthesized and successfully used in a biological assay. In conclusion, a functionalization scheme for AuNPs has been developed that offers ease of modification, often requiring single steps and short incubation time. The obtained functionalized AuNPs offer considerable flexibility, as the functionalization protocol can be personalized to match requirements of multiple assays.
Collapse
Affiliation(s)
- Dario Brambilla
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| | - Federica Panico
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| | - Lorenzo Zarini
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| | - Alessandro Mussida
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| | - Anna M. Ferretti
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Gaudenzio Fantoli 16/15, 20138 Milan, Italy;
| | - Mete Aslan
- Electrical and Computer Engineering Department, Boston University, Boston, MA 02215, USA; (M.A.); (M.S.Ü.)
| | - M. Selim Ünlü
- Electrical and Computer Engineering Department, Boston University, Boston, MA 02215, USA; (M.A.); (M.S.Ü.)
| | - Marcella Chiari
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| |
Collapse
|
5
|
Buchheit R, Niebuur BJ, González-García L, Kraus T. Surface polarization, field homogeneity, and dielectric breakdown in ordered and disordered nanodielectrics based on gold-polystyrene superlattices. NANOSCALE 2023; 15:7526-7536. [PMID: 37022092 DOI: 10.1039/d3nr01038d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hybrid dielectrics were prepared from dispersions of nanoparticles with gold cores (diameters from 2.9 nm to 8.2 nm) and covalently bound thiol-terminated polystyrene shells (5000 Da and 11 000 Da) in toluene. Their microstructure was investigated with small angle X-ray scattering and transmission electron microscopy. The particles arranged in nanodielectric layers with either face-centered cubic or random packing, depending on the ligand length and core diameter. Thin film capacitors were prepared by spin-coating inks on silicon substrates, contacted with sputtered aluminum electrodes, and characterized with impedance spectroscopy between 1 Hz and 1 MHz. The dielectric constants were dominated by polarization at the gold-polystyrene interfaces that we could precisely tune via the core diameter. There was no difference in the dielectric constant between random and supercrystalline particle packings, but the dielectric losses depended on the layer structure. A model that combines Maxwell-Wagner-Sillars theory and percolation theory described the relationship of the specific interfacial area and the dielectric constant quantitatively. The electric breakdown of the nanodielectric layers sensitively depended on particle packing. A highest breakdown field strength of 158.7 MV m-1 was found for the sample with 8.2 nm cores and short ligands that had a face-centered cubic structure. Breakdown apparently is initiated at the microscopic maxima of the electric field that depends on particle packing. The relevance of the results for industrially produced devices was demonstrated on inkjet printed thin film capacitors with an area of 0.79 mm2 on aluminum coated PET foils that retained their capacity of 1.24 ± 0.01 nF@10 kHz during 3000 bending cycles.
Collapse
Affiliation(s)
- Roman Buchheit
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Bart-Jan Niebuur
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Lola González-García
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany.
| | - Tobias Kraus
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany.
| |
Collapse
|
6
|
Schmid F. Virtual Issue on Polymers: Recent Advances from a Physical Chemistry Perspective. J Phys Chem B 2022; 126:8359-8361. [PMID: 36300292 DOI: 10.1021/acs.jpcb.2c06378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
| |
Collapse
|
7
|
Dutta S, Shreyash N, Satapathy BK, Saha S. Advances in design of polymer brush functionalized inorganic nanomaterials and their applications in biomedical arena. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1861. [PMID: 36284373 DOI: 10.1002/wnan.1861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
Grafting of polymer brush (assembly of polymer chains tethered to the substrate by one end) is emerging as one of the most viable approach to alter the surface of inorganic nanomaterials. Inorganic nanomaterials despite their intrinsic functional superiority, their applications remain restricted due to their incompatibility with organic or biological moieties vis-à-vis agglomeration issues. To overcome such a shortcoming, polymer brush modified surfaces of inorganic nanomaterials have lately proved to be of immense potential. For example, polymer brush-modified inorganic nanomaterials can act as efficient substrates/platforms in biomedical applications, ranging from drug-delivery to protein-array due to their integrated advantages such as amphiphilicity, stimuli responsiveness, enhanced biocompatibility, and so on. In this review, the current state of the art related to polymer brush-modified inorganic nanomaterials focusing, not only, on their synthetic strategies and applications in biomedical field but also the architectural influence of polymer brushes on the responsiveness properties of modified nanomaterials have comprehensively been discussed and its associated future perspective is also presented. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soumyadip Dutta
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| | - Nehil Shreyash
- Rajiv Gandhi Institute of Petroleum Technology Jais Uttar Pradesh India
| | - Bhabani Kumar Satapathy
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| | - Sampa Saha
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| |
Collapse
|
8
|
Chia ZC, Yang LX, Cheng TY, Chen YJ, Cheng HL, Hsu FT, Wang YJ, Chen YY, Huang TC, Fang YS, Huang CC. In Situ Formation of Au-Glycopolymer Nanoparticles for Surface-Enhanced Raman Scattering-Based Biosensing and Single-Cell Immunity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52295-52307. [PMID: 34706531 DOI: 10.1021/acsami.1c13647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Successful synthesis of glyconanoparticles has attracted much attention due to their various biointeractive capabilities, but it is still a challenge to understand different single-cell responses to exogenous particles among cell populations. Herein, we designed polyaniline-containing galactosylated gold nanoparticles (Au@PGlyco NPs) via in situ polymerization of ortho-nitrophenyl-β-galactoside assisted by Au nucleation. The nanogold-carrying polyaniline block produced electromagnetic enhancement in surface-enhanced Raman scattering (SERS). The underlying polymerization mechanism of ortho-nitrophenyl compounds via the formation of Au nanoparticles was investigated. Depending on how the galactoside moiety reacted with β-galactosidase derived from bacteria, the Au@PGlyco NPs-mediated SERS biosensor could detect low amounts of bacteria (∼1 × 102 CFU/mL). In addition, a high accumulation of Au@PGlyco NPs mediated the immune response of tumor-associated M2 macrophages to the immunogenic M1 macrophage transition, which was elicited by reactive oxygen levels biostimulation using single-cell SERS-combined fluorescence imaging. Our study suggested that Au@PGlyco NPs may serve as a biosensing platform with the labeling capacity on galactose-binding receptors expressed cell and immune regulation.
Collapse
Affiliation(s)
- Zi-Chun Chia
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Xing Yang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yu Cheng
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ya-Jyun Chen
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Horng-Long Cheng
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tzu-Chi Huang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Syun Fang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
9
|
Sindram J, Karg M. Polymer ligand binding to surface-immobilized gold nanoparticles: a fluorescence-based study on the adsorption kinetics. SOFT MATTER 2021; 17:7487-7497. [PMID: 34323887 DOI: 10.1039/d1sm00892g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report on a simple, fluorescence-based method for the investigation of the binding kinetics of polystyrene ligands, dispersed in an organic solvent, to substrate supported gold nanoparticles. For this purpose, we develop a protocol for the immobilization of gold nanoparticles on glass substrates, that yields sub-monolayers of randomly distributed particles with excellent homogeneity and reproducibility. Using fluorescently labeled polystyrene, we monitor the ligand concentration in bulk dispersion in real time and follow the binding to the particle-decorated substrates. The influence of the ligand molecular weight on the binding kinetics is investigated. We correlate the reaction rates with the diffusion coefficients of the different ligands and are able to describe the molecular weight dependency with a simple kinetic model. Both the diffusion and the activation step appear to contribute to the effective reaction rates.
Collapse
Affiliation(s)
- Julian Sindram
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | |
Collapse
|