1
|
Ueda Y, Micheau C, Akutsu-Suyama K, Tokunaga K, Yamada M, Yamada NL, Bourgeois D, Motokawa R. Fluorous and Organic Extraction Systems: A Comparison from the Perspectives of Coordination Structures, Interfaces, and Bulk Extraction Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24257-24271. [PMID: 39506552 DOI: 10.1021/acs.langmuir.4c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Microscopic structures in liquid-liquid extraction, such as structuration between extractants or extracted complexes in bulk organic phases and at interfaces, can influence macroscopic phenomena, such as the distribution behavior of solutes, including extraction efficiency and selectivity. In this study, we correlated the macroscopic behavior of the Zr(IV) extraction from nitric acid solutions with microscopic structural information to understand at the molecular level the key factors contributing to the higher metal ion extraction performance in the fluorous extraction system as compared to the analogous organic extraction system. The fluorous and organic extraction systems consist of tris(4,4,5,5,6,6,7,7,7-nonafluoroheptyl) phosphate (TFP) in perfluorohexane and tri-n-heptyl phosphate (THP) in n-hexane, respectively. Extended X-ray absorption fine structure, neutron reflectometry (NR), and small-angle neutron scattering revealed the structural information around the central metal ion of the complex, at the interface, and in the bulk extraction phase, respectively. NR results showed that extractant molecules did not accumulate much at the interface in both extraction system. In the fluorous extraction system, extractant aggregates with a 1.46 nm radius of gyration (Rg) were formed after contact with nitric acid, and remained even after Zr(IV) extraction through the form of a 1:3 (Zr(IV):TFP) complex. In contrast, in the organic extraction system, only extractant dimers with Rg of 0.70 nm were formed and Zr(IV) is extracted through the form of a 1:2 (Zr(IV):THP) complex. We speculate that differences in the local coordination structure around the Zr(IV) ion and the structuration of the extractant molecules in the bulk extraction phase contribute to the high Zr(IV) extraction performance in the fluorous extraction system. In particular, the size of the aggregates hardly changed with increasing Zr(IV) concentration in the fluorous phase, which may be closely related to the absence of phase splitting in the fluorous extraction system.
Collapse
Affiliation(s)
- Yuki Ueda
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki319-1195, Japan
| | - Cyril Micheau
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki319-1195, Japan
| | - Kazuhiro Akutsu-Suyama
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki319-1106, Japan
| | - Kohei Tokunaga
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, Tomata, Okayama 708-0698, Japan
| | - Masako Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Damien Bourgeois
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, BP 13 17171, Marcoule, 30207 Bagnols-sur-Cèze, France
| | - Ryuhei Motokawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki319-1195, Japan
| |
Collapse
|
2
|
Summers TJ, Diaz Sanchez J, Cantu DC. Effect of ion to ligand ratio on the aqueous to organic relative solubility of a lanthanide-ligand complex. Phys Chem Chem Phys 2024; 26:21612-21619. [PMID: 39086219 DOI: 10.1039/d4cp02586e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
In the solvent extraction of rare earth elements, mechanistic aspects remain unclear regarding where and how extractant molecules coordinate metal ions and transport them from the aqueous phase into the organic phase. Molecular dynamics simulations were used to examine how unprotonated di(2-ethylhexyl)phosphoric acid (DEHP-) ligands that coordinate the Gd3+ ion can transfer the ion across the water-organic interface. Using the umbrella sampling technique, potential of mean force profiles were constructed to quantify the relative solubility of the Gd3+ ion coordinated to 0-3 DEHP- ligands in either water, 1-octanol, or hexane solvents and at the water-organic interfaces. The simulations show the Gd-DEHP- complexes, at varying Ln-ligand ratios, preferentially solvate on water-organic interfaces. While the Gd(DEHP-)3 complex will diffuse past the aqueous-organic interface into the octanol solvent, it is thermodynamically preferred for the Gd(DEHP-)3 complex to remain in the water-hexane interface when there is no amphiphilic layer of excess ligand.
Collapse
Affiliation(s)
- Thomas J Summers
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, NV, USA.
| | - Jesus Diaz Sanchez
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, NV, USA.
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, NV, USA.
| |
Collapse
|
3
|
Sun P, Binter EA, Vo T, Benjamin I, Bera MK, Lin B, Bu W, Schlossman ML. Relevance of Surface Adsorption and Aqueous Complexation for the Separation of Co(II), Ni(II), and Fe(III). J Phys Chem B 2023; 127:3505-3515. [PMID: 37018762 DOI: 10.1021/acs.jpcb.2c08412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
During the solvent extraction of metal ions from an aqueous to an organic phase, organic-soluble extractants selectively target aqueous-soluble ions for transport into the organic phase. In the case of extractants that are also soluble in the aqueous phase, our recent studies of lanthanide ion-extractant complexes at the surface of aqueous solutions suggested that ion-extractant complexation in the aqueous phase can hinder the solvent extraction process. Here, we investigate a similar phenomenon relevant to the separation of Co(II), Ni(II), and Fe(III). X-ray fluorescence near total reflection and tensiometry are used to characterize ion adsorption behavior at the surface of aqueous solutions containing water-soluble extractants, either bis(2-ethylhexyl) phosphoric acid (HDEHP) or 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEHEHP), as well as adsorption to a monolayer of water-insoluble extractant dihexadecyl phosphoric acid (DHDP) at the aqueous-vapor interface. Competitive adsorption of Ni(II) and Fe(III) utilizing either HDEHP or DHDP illustrates the essential feature of the recent lanthanide studies that the ion, which is preferentially extracted in liquid-liquid extraction, Fe(III), is found preferentially adsorbed to the water-vapor interface only in the presence of the water-insoluble extractant DHDP. A more subtle competition produces comparable adsorption behavior of Co(II) and Ni(II) at the surfaces of both HDEHP- and HEHEHP-aqueous solutions in spite of the known preference for Co(II) under solvent extraction conditions. Comparison experiments with a monolayer of DHDP reveal that Co(II) is preferentially adsorbed to the surface. This preference for Co(II) is also supported by molecular dynamics simulations of the potential of mean force of ions interacting with the soluble extractants in water. These results highlight the possibility that complexation of extractants and ions in the aqueous phase can alter selectivity in the solvent extraction of critical elements.
Collapse
Affiliation(s)
- Pan Sun
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Erik A Binter
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Trung Vo
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Ilan Benjamin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Mrinal K Bera
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Binhua Lin
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Wei Bu
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Mark L Schlossman
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
4
|
Affiliation(s)
- Franz M Geiger
- Northwestern University, Evanston, Illinois 60208, United States
| | | |
Collapse
|
5
|
Kusaka R, Watanabe M. Development of Heavy Element Chemistry at Interfaces: Observing Actinide Complexes at the Oil/Water Interface in Solvent Extraction by Nonlinear Vibrational Spectroscopy. J Phys Chem Lett 2022; 13:7065-7071. [PMID: 35900124 PMCID: PMC9358700 DOI: 10.1021/acs.jpclett.2c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Understanding the chemistry of elements at the bottom of the periodic table is a challenging goal in chemistry. Observing actinide species at interfaces by using interface-selective second-order nonlinear optical spectroscopy, such as vibrational sum frequency generation (VSFG) spectroscopy, is a promising route for developing heavy element chemistry; however, such attempts are scarce. Here, we investigated the phase transfer mechanism of uranyl ions (UO22+) in solvent extraction using the di(2-ethylhexyl)phosphoric acid (HDEHP) extractant dissolved in the dodecane organic phase by probing the oil/water liquid-liquid interface using VSFG spectroscopy. The POO- symmetric stretch vibrational signals of the HDEHP ligands clearly demonstrated that uranyl ions form interfacial complexes with HDEHP at the oil/water interface. The interfacial uranyl-HDEHP complexes were formed with uranyl ions coming from both the aqueous and oil phases, strongly suggesting that the interfacial complex is an intermediate to cross the oil/water interface. Density functional theory calculations proposed the molecular structure of the interfacial uranyl-HDEHP complex.
Collapse
|
6
|
Nayak S, Kumal RR, Uysal A. Spontaneous and Ion-Specific Formation of Inverted Bilayers at Air/Aqueous Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5617-5625. [PMID: 35482964 DOI: 10.1021/acs.langmuir.2c00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing better separation technologies for rare earth metals, an important aspect of a sustainable materials economy, is challenging due to their chemical similarities. Identifying molecular-scale interactions that amplify the subtle differences between the rare earths can be useful in developing new separation technologies. Here, we describe the ion-dependent monolayer to inverted bilayer transformation of extractant molecules at the air/aqueous interface. The inverted bilayers form with Lu3+ ions but not with Nd3+. By introducing Lu3+ ions to preformed monolayers, we extract kinetic parameters corresponding to the monolayer to inverted bilayer conversion. Temperature-dependent studies show Arrhenius behavior with an energy barrier of 40 kcal/mol. The kinetics of monolayer to inverted bilayer conversion is also affected by the character of the background anion, although anions are expected to be repelled from the interface. Our results show the outsized importance of ion-specific effects on interfacial structure and kinetics, pointing to their role in chemical separation methods.
Collapse
Affiliation(s)
- Srikanth Nayak
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Raju R Kumal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
7
|
Premadasa UI, Ma YZ, Sacci RL, Bocharova V, Thiele NA, Doughty B. Understanding Self-Assembly and the Stabilization of Liquid/Liquid Interfaces: The Importance of Ligand Tail Branching and Oil-Phase Solvation. J Colloid Interface Sci 2021; 609:807-814. [PMID: 34872722 DOI: 10.1016/j.jcis.2021.11.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/05/2023]
Abstract
HYPOTHESIS Organophosphorus-based ligands represent a versatile set of solvent extraction reagents whose chemical makeup plays an important role in extraction mechanism. We hypothesize that the branching of the extractant hydrophobic tail and its oil-phase solvation affect the liquid/liquid interfacial structure. Understanding the structure mediated adsorption and interfacial ordering becomes key in designing ligands with enhanced selectivity and efficiency for targeted extractions. EXPERIMENT We employed vibrational sum frequency generation spectroscopy and interfacial tension measurements to extract thermodynamic adsorption energies, map interfacial ordering, and rationalize disparate behaviors of model di-(2-ethylhexyl) phosphoric acid and dioctyl phosphoric acid ligands at the hexadecane water interface. FINDINGS With increased surface loading, ligands with branched hydrophobic tails formed stable interfaces at much lower concentrations than those observed for ligands with linear alkyl tails. The lack of an oil phase and associated solvation results in markedly different interfacial properties, and thus measurements made at air/liquid surfaces cannot be assumed to correlate with the processes occurring at buried liquid/liquid interfaces. We attribute these differences in the surface mediated self-assembly to key variations in hydrophobic interactions and tail solvation taking place in the oil phase demonstrating that interactions in both the polar and nonpolar phases are essential to understand self-assembly and function.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
8
|
Sun P, Binter EA, Liang Z, Brown MA, Gelis AV, Benjamin I, Bera MK, Lin B, Bu W, Schlossman ML. Antagonistic Role of Aqueous Complexation in the Solvent Extraction and Separation of Rare Earth Ions. ACS CENTRAL SCIENCE 2021; 7:1908-1918. [PMID: 34841061 PMCID: PMC8614105 DOI: 10.1021/acscentsci.1c00960] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 05/28/2023]
Abstract
Solvent extraction is used widely for chemical separations and environmental remediation. Although the kinetics and efficiency of this process rely upon the formation of ion-extractant complexes, it has proven challenging to identify the location of ion-extractant complexation within the solution and its impact on the separation. Here, we use tensiometry and X-ray scattering to characterize the surface of aqueous solutions of lanthanide chlorides and the water-soluble extractant bis(2-ethylhexyl) phosphoric acid (HDEHP), in the absence of a coexisting organic solvent. These studies restrict ion-extractant interactions to the aqueous phase and its liquid-vapor interface, allowing us to explore the consequences that one or the other is the location of ion-extractant complexation. Unexpectedly, we find that light lanthanides preferentially occupy the liquid-vapor interface. This contradicts our expectation that heavy lanthanides should have a higher interfacial density since they are preferentially extracted by HDEHP in solvent extraction processes. These results reveal the antagonistic role played by ion-extractant complexation within the aqueous phase and clarify the advantages of complexation at the interface. Extractants in common use are often soluble in water, in addition to their organic phase solubility, and similar effects to those described here are expected to be relevant to a variety of separations processes.
Collapse
Affiliation(s)
- Pan Sun
- NSF’s
ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Erik A. Binter
- Department
of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Zhu Liang
- Department
of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - M. Alex Brown
- Chemical
and Fuel Cycle Technologies Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Artem V. Gelis
- Radiochemistry
Program, Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89141, United States
| | - Ilan Benjamin
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Mrinal K. Bera
- NSF’s
ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Binhua Lin
- NSF’s
ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Wei Bu
- NSF’s
ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Mark L. Schlossman
- Department
of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|