1
|
Mazumder A, Panthakkal Das P, Vinod K, Maret PD, Lijina MP, Engels B, Hariharan M. Core-Twist Modulated Intersystem Crossing in a π-Fused Single-Molecule. J Phys Chem Lett 2025; 16:4643-4651. [PMID: 40314438 DOI: 10.1021/acs.jpclett.5c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Herein, we present direct evidence of intersystem crossing (ISC) in a core-twisted naphthalenemonoimide-fused perylenediimide (NP) at the single-molecule level. The ISC process was characterized by frequent quantum jumps (short off states) in the single-molecule fluorescence measurements. The singlet to triplet quantum jumps in NP was corroborated by ultrafast transient absorption measurements. NP exhibits intersystem crossing with a rate constant kISC = 6.5 × 107 s-1 and a triplet quantum yield ϕT = 25.8 ± 2.4%. Our theoretical investigations unveil the potential crossing and state mixing between first singlet excited state S1 and third triplet excited state T3, thus providing insight into the ISC mechanism during the relaxation of NP from the Franck-Condon region to its optimal geometry in the S1 state. The current investigation provides critical insights into the twist-induced ISC process in a polyaromatic hydrocarbon at both the single-molecule and ensemble levels.
Collapse
Affiliation(s)
- Aniruddha Mazumder
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Pallavi Panthakkal Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Kavya Vinod
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Philip Daniel Maret
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - M P Lijina
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| |
Collapse
|
2
|
Chen X, Kurganskii IV, Zhuang Z, He Y, Rehmat N, Mahmood Z, Zhao J, Fedin MV, Luo L, Escudero D, Dick B. Thionated Perylenebisimides as Heavy-Atom-Free Triplet Photosensitizers: Intersystem Crossing, Electron Spin Dynamics, and Application in Photodynamic Therapy. Angew Chem Int Ed Engl 2025:e202500718. [PMID: 40242937 DOI: 10.1002/anie.202500718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
The thionation induced intersystem crossing (ISC) in perylenebisimide (PBI) derivatives was studied. The triplet state lifetimes of the thionated PBIs are substantially shortened (0.12-0.78 µs) as compared to the unsubstituted PBI (ca. 130 µs). Moreover, there is a clear trend of shortening of the triplet excited state lifetimes and the degree of thionation of the carbonyl groups in PBI. These findings rationalize the previous report of the contradictory lower 1O2 quantum yields for the PBI derivatives with more carbonyl groups thionated. Time-resolved electron paramagnetic resonance (TREPR) spectral study shows that the zero field splitting parameters D (1625-1992 MHz) of the lowest triplet states of thionated PBI are larger than that of the pristine PBI chromophore (D = 1166 MHz), which is attributed to the influence of sulfur atoms. Interestingly, the electron spin polarization (ESP) pattern of the TREPR spectra is inverted at longer delay time. Importantly we observed ISC for the dianion of the thionated PBI derivatives, and photoexcited dianion species can be used as super strong reductant for photocatalysis with the advantage of long excited state lifetimes (18-85 µs), and the excited state oxidation potentials are -1.47 to -1.77 V (versus Fc/Fc+).
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P.R. China
| | | | - Zhiyong Zhuang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of BioInorg. Chem. and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yue He
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
| | - Noreen Rehmat
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P.R. China
| | - Zafar Mahmood
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P.R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P.R. China
| | - Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of BioInorg. Chem. and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | | | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg, D-93053, Germany
| |
Collapse
|
3
|
Tang J, Sukhanov AA, Wei M, Zhang X, Zhao J, Dick B, Voronkova VK, Li MD. Thionated Coumarins: Study of the Intersystem Crossing and the Zero-field Splitting of the Triplet State Using Time-Resolved Transient Optical and Electron Paramagnetic Resonance Spectroscopies. Chemistry 2025; 31:e202404589. [PMID: 40040377 DOI: 10.1002/chem.202404589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/06/2025]
Abstract
To study the effect of thionation of the carbonyl groups in a chromophore, i. e. replacing the O atom with S atom, on the photophysics, we studied two thionated coumarin derivatives (Cou-S and Cou-6-S) with various steady state and transient spectroscopic methods. Both compounds exhibit red-shifted absorption (up to 4900 cm-1) and strong fluorescence quenching as compared to the unthionated analogues. Femtosecond transient absorption spectra show fast ISC (ca. 10 ps) in the thionated coumarin derivatives, while negligible ISC was observed in the unthionated coumarin. Interestingly, triplet excited state lifetimes of the thionated coumarin (0.14 μs) is much shorter than the unthionated analogues (53.4 μs). Time-resolved electron paramagnetic resonance (TREPR) spectra indicate much larger zero field splitting (ZFS) D parameters (up to 0.287 cm-1) for the T1 state of the thionated coumarins than the unthionated analogues (D=0.1001 cm-1). This large D value is attributed to the strong spin orbital coupling effect. These results demonstrate the advantage and the drawback of thionation-enhanced ISC, i. e. the ISC is efficient, but triplet state lifetimes become substantially shorter. This information is useful for the future design of heavy atom-free triplet photosensitizers for photodynamic therapy, photon upconversion, photocatalytic organic synthesis and photopolymerization, etc.
Collapse
Affiliation(s)
- Jieyu Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Min Wei
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-, 93053, Regensburg, Germany
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| |
Collapse
|
4
|
Li B, Liao S, Li J, Chen X, Zhang X, Zhao J, Li MD, Dick B, Mazzone G, Gurzadyan GG. Excited state dynamics of a Bodipy derivative with a twisted molecular structure: Combined experimental and theoretical studies. J Chem Phys 2025; 162:054309. [PMID: 39902709 DOI: 10.1063/5.0245843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025] Open
Abstract
The photophysical properties of a boron dipyrromethene (Bodipy, BDP) derivative (BDP-SA) in which one F atom at the BDP core was replaced by an O atom and condensed with salicylaldehyde were investigated. This compound has a twisted molecular structure and unusually low fluorescence quantum yield (1% in toluene). No intersystem crossing was observed with a nanosecond transient absorption study. The triplet state lifetime of BDP-SA was determined to be 115 μs by photosensitizing. Femtosecond transient absorption shows a structure relaxation of ∼1.5 ps for the S1 excited state. Theoretical studies show conical intersections, which are responsible for the efficient non-radiative decay of the S1 state, which has extremely weak fluorescence.
Collapse
Affiliation(s)
- Bei Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, People's Republic of China
| | - Sheng Liao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, People's Republic of China
| | - Jiayu Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, People's Republic of China
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, People's Republic of China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, People's Republic of China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, People's Republic of China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, People's Republic of China
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93053 Regensburg, Germany
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende 87036, Italy
| | - Gagik G Gurzadyan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
5
|
Yu C, Sun Y, Liu S, Li J, Wang J, Wei Y, Xu X, Yang M, Jiao L, Hao E. Twisted Benzothieno-Fused BOPHY Dyes as Triplet Photosensitizers with Long-Lived Triplet Excited States. Inorg Chem 2024; 63:21898-21908. [PMID: 39485268 DOI: 10.1021/acs.inorgchem.4c03013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The synthesis of a series of photostable [b]-benzothieno-fused BOPHY derivatives is reported via one-pot condensation of formylated isoindoles or formylindoles with hydrazine and subsequent boron complexation. These dyes show strong absorption in the deep red region and acceptable fluorescence quantum yields (∼30%). The two fused benzothiophene moieties are slightly deviated from the BOPHY core (with dihedral angles of 6.1 and 10.2°). This slightly twisted conformation brings an enhanced spin-orbit coupling and a reduced energy band gap between singlet and triplet states. The enhanced intersystem cross process endows these series of dyes with a good singlet oxygen quantum yield (up to 63%), a high triplet-state quantum yield (up to 78%), and a long lifetime value (up to 127 μs). Density functional theory calculations indicate that the transition from S1 to T2 states is crucial for triplet-state formation, highlighting their high efficiency in intersystem crossing. The calculated triplet electron spin surface reveals a widespread distribution of triplet states across the conjugated molecular structure, which enhances the Dexter mechanism for triplet energy transfer in these BOPHY photosensitizers. These findings are helpful for thorough understanding of the fundamental ISC process and developing triplet photosensitizers.
Collapse
Affiliation(s)
- Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Yingzhu Sun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Suowei Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Jinjun Wang
- College of Food & Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264005, China
| | - Yaxiong Wei
- Anhui Province Key Laboratory of Optoelectrical Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Xinsheng Xu
- Anhui Province Key Laboratory of Optoelectrical Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Mengxue Yang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
6
|
Wang R, Sukhanov AA, He Y, Mambetov AE, Zhao J, Escudero D, Voronkova VK, Di Donato M. Electron Spin Dynamics of the Intersystem Crossing in Aminoanthraquinone Derivatives: The Spectral Telltale of Short Triplet Excited States. J Phys Chem B 2024; 128:10189-10199. [PMID: 39364553 DOI: 10.1021/acs.jpcb.4c04242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
We studied the excited state dynamics of two bis-amino substituted anthraquinone (AQ) derivatives, with absorption in the visible spectral region, which results from the attachment of a electron-donating group to the electron-deficient AQ chromophore. Femtosecond transient absorption spectra show that intersystem crossing (ISC) takes place in 190-320 ps, and nanosecond transient absorption spectra demonstrated an unusually short triplet state lifetime (2.06-5.43 μs) for the two AQ derivatives. Pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show an inversion of the electron spin polarization (ESP) phase pattern of the triplet state at a longer delay time after laser flash. Spectral simulations show faster decay of the Ty sublevel than the other two sublevels (τx = 15.0 μs, τy = 1.50 μs, τz = 15.0 μs); theoretical computation predicts initial overpopulation of the Ty sublevel, and rationalizes the short T1 state lifetime and the ESP inversion. Theoretical computations taking into account the electron-vibrational coupling, i.e., the Herzberg-Teller effect, successfully rationalize the TREPR experimental observations.
Collapse
Affiliation(s)
- Ruilei Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Yue He
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Aidar E Mambetov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Daniel Escudero
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, Sesto Fiorentino (FI) 50019, Firenze, Italy
- ICCOM-CNR, via Madonna del Piano 10, Sesto Fiorentino (FI) 50019, Italy
| |
Collapse
|
7
|
Imran M, Kurganskii I, Maity P, Yu F, Zhao J, Gurzadyan GG, Dick B, Mohammed OF, Fedin M. Origin of Intersystem Crossing in Red-Light Absorbing Bodipy Derivatives: Time-Resolved Transient Optical and Electron Paramagnetic Resonance Spectral Studies with Twisted and Planar Compounds. J Phys Chem B 2024; 128:9859-9872. [PMID: 39345198 DOI: 10.1021/acs.jpcb.4c05418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
We studied the intersystem crossing (ISC) property of red-light absorbing heavy atom-free dihydronaphtho[b]-fused Bodipy derivatives (with phenyl group attached at the lower rim via ethylene bridge, taking constrained geometry, i.e., BDP-1 and the half-oxidized product BDP-2) and dispiroflourene[b]-fused Bodipy (BDP-3) that have a twisted π-conjugated framework. BDP-1 and BDP-3 show strong and sharp absorption bands (i.e., ε = 2.0 × 105 M-1 cm-1 at 639 nm, fwhm ∼491 cm-1 for BDP-3). BDP-1 is significantly twisted (φ = 21.6°), while upon mono-oxidation, BDP-2 becomes nearly planar on the oxidized side (φ = 3.5°). Interestingly, BDP-2 showed efficient ISC (triplet state quantum yield, ΦT = 40%) due to S1/T2 state energy matching. Long-lived triplet excited state was observed (τT = 212 μs in solution and 2.4 ms in polymer matrix), and ISC takes 4.0 ns. Differently, twisted BDP-1 gives weak ISC only 5%, ISC takes 7.7 ns, and the triplet state is populated only with addition of ethyl iodide. Time-resolved electron paramagnetic resonance spectra of BDP-1 revealed the coexistence of two triplet states, with drastically different zero-field splitting D parameters of -2047 MHz and -1370 MHz, respectively, along with varying sublevel population ratios. We demonstrate that the ISC is not necessarily enhanced by torsion of the π-conjugation framework; instead, S1/Tn state energy matching is more efficient to induce ISC even in compounds that have planar molecular structures.
Collapse
Affiliation(s)
- Muhammad Imran
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ivan Kurganskii
- International Tomography Center, SB RAS, and Novosibirsk State University, Novosibirsk 630090, Russia
| | - Partha Maity
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Gagik G Gurzadyan
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Regensburg D-93053, Germany
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Matvey Fedin
- International Tomography Center, SB RAS, and Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Fureraj I, Wega J, Balanikas E, Puji Pamungkas KK, Sakai N, Matile S, Vauthey E. Excitation-Wavelength-Dependent Photophysics of a Torsionally Disordered Push-Pull Dye. J Phys Chem Lett 2024:7857-7862. [PMID: 39052969 DOI: 10.1021/acs.jpclett.4c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The torsional disorder of conjugated dyes in the electronic ground state can lead to inhomogeneous broadening of the S1 ←S0 absorption band, allowing for the selective photoexcitation of molecules with different amounts of distortion. Here, we investigate how this affects electronic transitions to upper excited states. We show that torsion of a core-alkynylated push-pull dye can have opposite effects on the oscillator strength of its lowest-energy transitions. Consequently, photoselection of planar and twisted molecules can be achieved by exciting in distinct absorption bands. Whereas this has limited effect in liquids due to fast planarization of the excited molecules, it strongly affects the overall photophysics in a polymeric environment, where torsional motion is hindered, allowing for the photoselection of molecules with different fluorescence quantum yields and intersystem-crossing dynamics.
Collapse
Affiliation(s)
- Ina Fureraj
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Johannes Wega
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Evangelos Balanikas
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
9
|
Adachi Y, Kurihara M, Yamada K, Arai F, Hattori Y, Yamana K, Kawasaki R, Ohshita J. Insights into mechanistic interpretation of crystalline-state reddish phosphorescence of non-planar π-conjugated organoboron compounds. Chem Sci 2024; 15:8127-8136. [PMID: 38817577 PMCID: PMC11134383 DOI: 10.1039/d4sc01184h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/20/2024] [Indexed: 06/01/2024] Open
Abstract
Metal-free room-temperature phosphorescent (RTP) materials are attracting attention in such applications as organic light-emitting diodes and bioimaging. However, the chemical structures of RTP materials reported thus far are mostly predominantly based on π-conjugated systems incorporating heavy atoms such as bromine atoms or carbonyl groups, resulting in limited structural diversity. On the other hand, triarylboranes are known for their strong Lewis acidity and deep LUMO energy levels, but few studies have reported on their RTP properties. In this study, we discovered that compounds based on a tetracyclic structure containing boron, referred to as benzo[d]dithieno[b,f]borepins, exhibit strong solid-state reddish phosphorescence even in air. Quantum chemical calculations, including those for model compounds, revealed that the loss of planarity of the tetracyclic structure increases spin-orbit coupling matrix elements, thereby accelerating the intersystem crossing process. Moreover, single-crystal X-ray structural analysis and natural energy decomposition analysis suggested that the borepin compounds without bromine or oxygen atoms, unlike typical RTP materials, exhibit red-shifted phosphorescence in the crystalline state owing to structural relaxation in the T1 state. Additionally, the borepin compounds showed potential application as bioimaging dyes.
Collapse
Affiliation(s)
- Yohei Adachi
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Maho Kurihara
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Kohei Yamada
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Fuka Arai
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Yuto Hattori
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Keita Yamana
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Riku Kawasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Joji Ohshita
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
- Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University Higashi-Hiroshima Hiroshima 739-0046 Japan
| |
Collapse
|
10
|
Chen X, Luo X, Wang K, You X, Xu J, Peng S, Wu D, Xia J. Efficient Intersystem Crossing in Extended Helical Perylene Diimide Dimers with Chalcogen-Annulation. J Phys Chem B 2024; 128:3964-3971. [PMID: 38602495 DOI: 10.1021/acs.jpcb.4c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The properties and formation mechanisms of the triplet state have been widely investigated since they are crucial intermediates in photo functional devices. Specifically, helical PDI dimers, horizontal expanded π-conjugated derivatives of PDI, have shown outstanding performance as electron acceptors in enhancing the performance of photovoltaics. Therefore, the exploration of triplet generation in helical PDI dimers plays a crucial role in understanding the mechanisms and excavating their further application. We make use of Se-annulation to induce intersystem crossing (ISC) in helical PDI dimers and further explore the triplet evolution process systematically as the number of Se atoms increases by transient absorption spectroscopy and the hole-electron analysis method. It shows that the twisted molecular conformation has paved the way for potential ISC in a parent molecule PDI2. The incorporation of Se atoms can result in evident promotion in the efficiency of ISC (ϕTPDI2-2Se = 96.9%) compared to the parent molecule PDI2 (ϕTPDI2 = 26.5%), indicating that chalcogen-annulation is also an efficient strategy in a π-extended system. Our results provide useful insights for understanding the triplet evolution process, which can help broaden the application of the π-extended PDI system into high-performance photovoltaics.
Collapse
Affiliation(s)
- Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoqi Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianlong Xia
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
11
|
Zhao J, Xu J, Huang H, Wang K, Wu D, Jasti R, Xia J. Appending Coronene Diimide with Carbon Nanohoops Allows for Rapid Intersystem Crossing in Neat Film. Angew Chem Int Ed Engl 2024; 63:e202400941. [PMID: 38458974 DOI: 10.1002/anie.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
The development of innovative triplet materials plays a significant role in various applications. Although effective tuning of triplet formation by intersystem crossing (ISC) has been well established in solution, the modulation of ISC processes in the solid state remains a challenge due to the presence of other exciton decay channels through intermolecular interactions. The cyclic structure of cycloparaphenylenes (CPPs) offers a unique platform to tune the intermolecular packing, which leads to controllable exciton dynamics in the solid state. Herein, by integrating an electron deficient coronene diimide (CDI) unit into the CPP framework, a donor-acceptor type of conjugated macrocycle (CDI-CPP) featuring intramolecular charge-transfer (CT) interaction was designed and synthesized. Effective intermolecular CT interaction resulting from a slipped herringbone packing was confirmed by X-ray crystallography. Transient spectroscopy studies showed that CDI-CPP undergoes ISC in both solution and the film state, with triplet generation time constants of 4.5 ns and 238 ps, respectively. The rapid triplet formation through ISC in the film state can be ascribed to the cooperation between intra- and intermolecular charge-transfer interactions. Our results highlight that intermolecular CT interaction has a pronounced effect on the ISC process in the solid state, and shed light on the use of the characteristic structure of CPPs to manipulate intermolecular CT interactions.
Collapse
Affiliation(s)
- Jingjing Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, China
| | - Huaxi Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| | - Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, 97403, Eugene, Oregon, USA
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
- International School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| |
Collapse
|
12
|
Wu Y, Cao H, Bakirov MM, Sukhanov AA, Li J, Liao S, Xiao X, Zhao J, Li MD, Kandrashkin YE. A Rational Way to Control the Triplet State Wave Function Confinement of Organic Chromophores: Effect of the Connection Sites and Spin Density Distribution-Guided Molecular Structure Design Principles in Bodipy Dimers. J Phys Chem Lett 2024; 15:959-968. [PMID: 38252167 DOI: 10.1021/acs.jpclett.3c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
To study the intersystem crossing (ISC) and the spatial confinement of the triplet excited states of organic chromophores, we prepared a series of Bodipy dimers. We found that the connection position of the two units has a significant effect on the absorption and fluorescence. Singlet oxygen quantum yields of 3.8-12.4% were observed for the dimers, which are independent of solvent polarity. Nanosecond transient absorption spectra indicate the population of long-lived triplet excited states with lifetimes (τT) of 45-454 μs. Pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show that the T1 triplet states are essentially delocalized, which is different from the case for the previously reported Bodipy dimers. The TREPR spectra of the triplet states imply that the delocalization over the whole dimer essentially depends on the electron density of the carbon atoms at the connection sites. This property may become a universal rule for controlling the T1 state confinement in multichromophore organic molecules.
Collapse
Affiliation(s)
- Yanran Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huaiman Cao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Marcel M Bakirov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Jiayu Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Sheng Liao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Yuri E Kandrashkin
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| |
Collapse
|
13
|
Chen X, Rehmat N, Kurganskii IV, Maity P, Elmali A, Zhao J, Karatay A, Mohammed OF, Fedin MV. Efficient Spin-Orbit Charge-Transfer Intersystem Crossing and Slow Intramolecular Triplet-Triplet Energy Transfer in Bodipy-Perylenebisimide Compact Dyads and Triads. Chemistry 2023; 29:e202302137. [PMID: 37553294 DOI: 10.1002/chem.202302137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Bodipy (BDP)-perylenebisimide (PBI) donor-acceptor dyads/triad were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). For BDP-PBI-3, in which BDP was attached at the imide position of PBI, higher singlet oxygen quantum yield (ΦΔ =85 %) was observed than the bay-substituted derivative BDP-PBI-1 (ΦΔ =30 %). Femtosecond transient absorption spectra indicate slow Förster resonance energy transfer (FRET; 40.4 ps) and charge separation (CS; 1.55 ns) in BDP-PBI-3, while for BDP-PBI-1, CS takes 2.8 ps. For triad BDP-PBI-2, ultrafast FRET (149 fs) and CS (4.7 ps) process were observed, the subsequent charge recombination (CR) takes 5.8 ns and long-lived 3 PBI* (179.8 μs) state is populated. Nanosecond transient absorption spectra of BDP-PBI-3 show that the CR gives upper triplet excited state (3 BDP*) and subsequently, via a slow intramolecular triplet energy transfer (14.5 μs), the 3 PBI* state is finally populated, indicating that upper triplet state is involved in SOCT-ISC. Time-resolved electron paramagnetic resonance spectroscopy revealed that both radical pair ISC (RP ISC) and SOCT-ISC contribute to the ISC. A rare electron spin polarization of (e, e, e, e, e, e) was observed for the triplet state formed via the RP ISC mechanism, due to the S-T+1 /T0 states mixing.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Noreen Rehmat
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Ivan V Kurganskii
- International Tomography Center, SB RAS, and, Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Partha Maity
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ayhan Elmali
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Beşevler, Ankara, Türkiye
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Ahmet Karatay
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Beşevler, Ankara, Türkiye
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Matvey V Fedin
- International Tomography Center, SB RAS, and, Novosibirsk State University, 630090, Novosibirsk, Russia
| |
Collapse
|
14
|
Zhou P, Aschauer U, Decurtins S, Feurer T, Häner R, Liu SX. Merging of Azulene and Perylene Diimide for Optical pH Sensors. Molecules 2023; 28:6694. [PMID: 37764470 PMCID: PMC10537133 DOI: 10.3390/molecules28186694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have emerged as promising materials for organic electronics, including organic photovoltaics (OPVs), organic field-effect transistors (OFETs), and organic light-emitting diodes (OLEDs). Particularly, non-hexagonal ring-fused PAHs are highly desirable due to their unique optoelectronic properties. Herein, a new redox-active azulene-perylene diimide triad 1 and its ring-fused counterpart, diazulenocoronene diimide 2, were synthesized and fully characterized by a combination of NMR, cyclic voltammetry, and UV-visible absorption spectroscopy. Direct comparison of their electronic properties leads us to the conclusion that a significant change in the localization of HOMO and LUMO occurs upon the fusion of azulene and perylene diimide in 2, leading to the lack of intramolecular charge-transfer character for transitions in the visible spectral region. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed to gain further insight into various electronic transitions. Moreover, we found that the adaptive response to acids and bases manifests itself in a reversible two-color change that can be attributed to changes in the chemical structures. Our findings pave the way for manipulating the relative HOMO and LUMO energy levels of organic chromophores by fusing non-alternant azulenes to an otherwise flat PAH, which could possibly lead to applications in organic electronics and optical sensors.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (P.Z.); (S.D.); (R.H.)
| | - Ulrich Aschauer
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2A, A-5020 Salzburg, Austria;
| | - Silvio Decurtins
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (P.Z.); (S.D.); (R.H.)
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland;
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (P.Z.); (S.D.); (R.H.)
| | - Shi-Xia Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (P.Z.); (S.D.); (R.H.)
| |
Collapse
|
15
|
Zhang X, Sukhanov AA, Liu X, Taddei M, Zhao J, Harriman A, Voronkova VK, Wan Y, Dick B, Di Donato M. Origin of intersystem crossing in highly distorted organic molecules: a case study with red light-absorbing N, N, O, O-boron-chelated Bodipys. Chem Sci 2023; 14:5014-5027. [PMID: 37206394 PMCID: PMC10189861 DOI: 10.1039/d3sc00854a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
To explore the relationship between the twisted π-conjugation framework of aromatic chromophores and the efficacy of intersystem crossing (ISC), we have studied a N,N,O,O-boron-chelated Bodipy derivative possessing a severely distorted molecular structure. Surprisingly, this chromophore is highly fluorescent, showing inefficient ISC (singlet oxygen quantum yield, ΦΔ = 12%). These features differ from those of helical aromatic hydrocarbons, where the twisted framework promotes ISC. We attribute the inefficient ISC to a large singlet-triplet energy gap (ΔES1/T1 = 0.61 eV). This postulate is tested by critical examination of a distorted Bodipy having an anthryl unit at the meso-position, for which ΦΔ is increased to 40%. The improved ISC yield is rationalized by the presence of a T2 state, localized on the anthryl unit, with energy close to that of the S1 state. The electron spin polarization phase pattern of the triplet state is (e, e, e, a, a, a), with the Tz sublevel of the T1 state overpopulated. The small zero-field splitting D parameter (-1470 MHz) indicates that the electron spin density is delocalized over the twisted framework. It is concluded that twisting of π-conjugation framework does not necessarily induce ISC, but S1/Tn energy matching may be a generic feature for increasing ISC for a new-generation of heavy atom-free triplet photosensitizers.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Xi Liu
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Maria Taddei
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Yan Wan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg D-93053 Regensburg Germany
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM, Istituto di Chimica dei Complessi OrganoMetallici Via Madonna del Piano 10 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
16
|
Heavy Atom-Free Triplet Photosensitizers: Molecular Structure Design, Photophysical Properties and Application in Photodynamic Therapy. Molecules 2023; 28:molecules28052170. [PMID: 36903415 PMCID: PMC10004235 DOI: 10.3390/molecules28052170] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising method for the treatment of cancer, because of its advantages including a low toxicity, non-drug-resistant character, and targeting capability. From a photochemical aspect, a critical property of triplet photosensitizers (PSs) used for PDT reagents is the intersystem crossing (ISC) efficiency. Conventional PDT reagents are limited to porphyrin compounds. However, these compounds are difficult to prepare, purify, and derivatize. Thus, new molecular structure paradigms are desired to develop novel, efficient, and versatile PDT reagents, especially those contain no heavy atoms, such as Pt or I, etc. Unfortunately, the ISC ability of heavy atom-free organic compounds is usually elusive, and it is difficult to predict the ISC capability of these compounds and design novel heavy atom-free PDT reagents. Herein, from a photophysical perspective, we summarize the recent developments of heavy atom-free triplet PSs, including methods based on radical-enhanced ISC (REISC, facilitated by electron spin-spin interaction), twisted π-conjugation system-induced ISC, the use of fullerene C60 as an electron spin converter in antenna-C60 dyads, energetically matched S1/Tn states-enhanced ISC, etc. The application of these compounds in PDT is also briefly introduced. Most of the presented examples are the works of our research group.
Collapse
|
17
|
Ahmed R, Manna AK. Tailoring intersystem crossing of perylenediimide through chalcogen-substitution at bay-position: A theoretical perspective. J Chem Phys 2022; 157:214301. [PMID: 36511549 DOI: 10.1063/5.0126428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Molecular-scale design strategies for promoting intersystem crossing (ISC) in small organic molecules are ubiquitous in developing efficient metal-free triplet photosensitizers with high triplet quantum yield (ΦT). Air-stable and highly fluorescent perylenediimide (PDI) in its pristine form displays very small ISC compared to the fluorescence due to the large singlet-triplet gap (ΔES-T) and negligibly small spin-orbit coupling (SOC) between the lowest singlet (S1) and triplet state (T1). However, its ΦT can be tuned by different chemical and mechanical means that are capable of either directly lowering the ΔES-T and increasing SOC or introducing intermediate low-lying triplet states (Tn, n = 2, 3, …) between S1 and T1. To this end, herein, a few chalcogen (X = O, S, Se) bay-substituted PDIs (PDI-X2) are computationally modeled aiming at introducing geometrical-strain at the PDI core and also mixing nπ* orbital character to ππ* in the lowest singlet and triplet excited states, which altogether may reduce ΔES-T and also improve the SOC. Our quantum-chemical calculations based on optimally tuned range-separated hybrid reveal the presence of intermediate triplet states (Tn, n = 2, 3) in between S1 and T1 for all three PDI-X2 studied in dichloromethane. More importantly, PDI-X2 shows a significantly improved ISC rate than the pristine PDI due to the combined effects stemming from the smaller ΔES-T and the larger SOC. The calculated ISC rates follow the order as PDI-O2 < PDI-S2 < PDI-Se2. These research findings will be helpful in designing PDI based triplet photosensitizers for biomedical, sensing, and photonic applications.
Collapse
Affiliation(s)
- Raka Ahmed
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati A.P 517619, India
| | - Arun K Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati A.P 517619, India
| |
Collapse
|
18
|
Ahmed R, Manna AK. Origins of Molecular-Twist-Triggered Intersystem Crossing in Functional Perylenediimides: Singlet–Triplet Gap versus Spin–Orbit Coupling. J Phys Chem A 2022; 126:6594-6603. [DOI: 10.1021/acs.jpca.2c03455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raka Ahmed
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, A.P 517619, India
| | - Arun K Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, A.P 517619, India
| |
Collapse
|
19
|
Mentzel P, Holzapfel M, Schmiedel A, Krummenacher I, Braunschweig H, Wodyński A, Kaupp M, Würthner F, Lambert C. Excited states and spin–orbit coupling in chalcogen substituted perylene diimides and their radical anions. Phys Chem Chem Phys 2022; 24:26254-26268. [DOI: 10.1039/d2cp02723b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel series of chalcogen bay-substituted perylene diimides show increasing SOC, which was investigated in detail via (time-resolved) optical spectroscopy, (spectro)electrochemistry, EPR spectroscopy and TD-DFT calculations.
Collapse
Affiliation(s)
- Paul Mentzel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco Holzapfel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Artur Wodyński
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|